14,375 research outputs found

    Fuzzy integral for rule aggregation in fuzzy inference systems

    Get PDF
    The fuzzy inference system (FIS) has been tuned and re-vamped many times over and applied to numerous domains. New and improved techniques have been presented for fuzzification, implication, rule composition and defuzzification, leaving one key component relatively underrepresented, rule aggregation. Current FIS aggregation operators are relatively simple and have remained more-or-less unchanged over the years. For many problems, these simple aggregation operators produce intuitive, useful and meaningful results. However, there exists a wide class of problems for which quality aggregation requires non- additivity and exploitation of interactions between rules. Herein, we show how the fuzzy integral, a parametric non-linear aggregation operator, can be used to fill this gap. Specifically, recent advancements in extensions of the fuzzy integral to \unrestricted" fuzzy sets, i.e., subnormal and non- convex, makes this now possible. We explore the role of two extensions, the gFI and the NDFI, discuss when and where to apply these aggregations, and present efficient algorithms to approximate their solutions

    On extending generalized Bonferroni means to Atanassov orthopairs in decision making contexts

    Full text link
    Extensions of aggregation functions to Atanassov orthopairs (often referred to as intuitionistic fuzzy sets or AIFS) usually involve replacing the standard arithmetic operations with those defined for the membership and non-membership orthopairs. One problem with such constructions is that the usual choice of operations has led to formulas which do not generalize the aggregation of ordinary fuzzy sets (where the membership and non-membership values add to 1). Previous extensions of the weighted arithmetic mean and ordered weighted averaging operator also have the absorbent element 〈1,0〉, which becomes particularly problematic in the case of the Bonferroni mean, whose generalizations are useful for modeling mandatory requirements. As well as considering the consistency and interpretability of the operations used for their construction, we hold that it is also important for aggregation functions over higher order fuzzy sets to exhibit analogous behavior to their standard definitions. After highlighting the main drawbacks of existing Bonferroni means defined for Atanassov orthopairs and interval data, we present two alternative methods for extending the generalized Bonferroni mean. Both lead to functions with properties more consistent with the original Bonferroni mean, and which coincide in the case of ordinary fuzzy values.<br /

    A penalty-based aggregation operator for non-convex intervals

    Full text link
    In the case of real-valued inputs, averaging aggregation functions have been studied extensively with results arising in fields including probability and statistics, fuzzy decision-making, and various sciences. Although much of the behavior of aggregation functions when combining standard fuzzy membership values is well established, extensions to interval-valued fuzzy sets, hesitant fuzzy sets, and other new domains pose a number of difficulties. The aggregation of non-convex or discontinuous intervals is usually approached in line with the extension principle, i.e. by aggregating all real-valued input vectors lying within the interval boundaries and taking the union as the final output. Although this is consistent with the aggregation of convex interval inputs, in the non-convex case such operators are not idempotent and may result in outputs which do not faithfully summarize or represent the set of inputs. After giving an overview of the treatment of non-convex intervals and their associated interpretations, we propose a novel extension of the arithmetic mean based on penalty functions that provides a representative output and satisfies idempotency

    Defining Bonferroni means over lattices

    Full text link
    In the face of mass amounts of information and the need for transparent and fair decision processes, aggregation functions are essential for summarizing data and providing overall evaluations. Although families such as weighted means and medians have been well studied, there are still applications for which no existing aggregation functions can capture the decision makers\u27 preferences. Furthermore, extensions of aggregation functions to lattices are often needed to model operations on L-fuzzy sets, interval-valued and intuitionistic fuzzy sets. In such cases, the aggregation properties need to be considered in light of the lattice structure, as otherwise counterintuitive or unreliable behavior may result. The Bonferroni mean has recently received attention in the fuzzy sets and decision making community as it is able to model useful notions such as mandatory requirements. Here, we consider its associated penalty function to extend the generalized Bonferroni mean to lattices. We show that different notions of dissimilarity on lattices can lead to alternative expressions.<br /

    Extension of the fuzzy integral for general fuzzy set-valued information

    Get PDF
    The fuzzy integral (FI) is an extremely flexible aggregation operator. It is used in numerous applications, such as image processing, multicriteria decision making, skeletal age-at-death estimation, and multisource (e.g., feature, algorithm, sensor, and confidence) fusion. To date, a few works have appeared on the topic of generalizing Sugeno's original real-valued integrand and fuzzy measure (FM) for the case of higher order uncertain information (both integrand and measure). For the most part, these extensions are motivated by, and are consistent with, Zadeh's extension principle (EP). Namely, existing extensions focus on fuzzy number (FN), i.e., convex and normal fuzzy set- (FS) valued integrands. Herein, we put forth a new definition, called the generalized FI (gFI), and efficient algorithm for calculation for FS-valued integrands. In addition, we compare the gFI, numerically and theoretically, with our non-EP-based FI extension called the nondirect FI (NDFI). Examples are investigated in the areas of skeletal age-at-death estimation in forensic anthropology and multisource fusion. These applications help demonstrate the need and benefit of the proposed work. In particular, we show there is not one supreme technique. Instead, multiple extensions are of benefit in different contexts and applications

    Axiomatizations of signed discrete Choquet integrals

    Get PDF
    We study the so-called signed discrete Choquet integral (also called non-monotonic discrete Choquet integral) regarded as the Lov\'asz extension of a pseudo-Boolean function which vanishes at the origin. We present axiomatizations of this generalized Choquet integral, given in terms of certain functional equations, as well as by necessary and sufficient conditions which reveal desirable properties in aggregation theory
    • …
    corecore