16 research outputs found

    Gödel mathematics versus Hilbert mathematics. I. The Gödel incompleteness (1931) statement: axiom or theorem?

    Get PDF
    The present first part about the eventual completeness of mathematics (called “Hilbert mathematics”) is concentrated on the Gödel incompleteness (1931) statement: if it is an axiom rather than a theorem inferable from the axioms of (Peano) arithmetic, (ZFC) set theory, and propositional logic, this would pioneer the pathway to Hilbert mathematics. One of the main arguments that it is an axiom consists in the direct contradiction of the axiom of induction in arithmetic and the axiom of infinity in set theory. Thus, the pair of arithmetic and set are to be similar to Euclidean and non-Euclidean geometries distinguishably only by the Fifth postulate now, i.e. after replacing it and its negation correspondingly by the axiom of finiteness (induction) versus that of finiteness being idempotent negations to each other. Indeed, the axiom of choice, as far as it is equivalent to the well-ordering “theorem”, transforms any set in a well-ordering either necessarily finite according to the axiom of induction or also optionally infinite according to the axiom of infinity. So, the Gödel incompleteness statement relies on the logical contradiction of the axiom of induction and the axiom of infinity in the final analysis. Nonetheless, both can be considered as two idempotent versions of the same axiom (analogically to the Fifth postulate) and then unified after logicism and its inherent intensionality since the opposition of finiteness and infinity can be only extensional (i.e., relevant to the elements of any set rather than to the set by itself or its characteristic property being a proposition). So, the pathway for interpreting the Gödel incompleteness statement as an axiom and the originating from that assumption for “Hilbert mathematics” accepting its negation is pioneered. A much wider context relevant to realizing the Gödel incompleteness statement as a metamathematical axiom is consistently built step by step. The horizon of Hilbert mathematics is the proper subject in the third part of the paper, and a reinterpretation of Gödel’s papers (1930; 1931) as an apology of logicism as the only consistent foundations of mathematics is the topic of the next second part

    Unknowable Truths: The Incompleteness Theorems and the Rise of Modernism

    Get PDF
    This thesis evaluates the function of the current history of mathematics methodologies and explores ways in which historiographical methodologies could be successfully implemented in the field. Traditional approaches to the history of mathematics often lack either an accurate portrayal of the social and cultural influences of the time, or they lack an effective usage of mathematics discussed. This paper applies a holistic methodology in a case study of Kurt Gödel’s influential work in logic during the Interwar period and the parallel rise of intellectual modernism. In doing so, the proofs for Gödel’s Completeness and Incompleteness theorems will be discussed as well as Gödel’s philosophical interests and influences of the time. To explore the intersection of these worlds, practices are borrowed from the fields of intellectual history and history of science and technology to analyze better the effects of society and culture on the mind of mathematicians like Gödel and their work

    Gödel Mathematics Versus Hilbert Mathematics. II Logicism and Hilbert Mathematics, the Identification of Logic and Set Theory, and Gödel’s 'Completeness Paper' (1930)

    Get PDF
    The previous Part I of the paper discusses the option of the Gödel incompleteness statement (1931: whether “Satz VI” or “Satz X”) to be an axiom due to the pair of the axiom of induction in arithmetic and the axiom of infinity in set theory after interpreting them as logical negations to each other. The present Part II considers the previous Gödel’s paper (1930) (and more precisely, the negation of “Satz VII”, or “the completeness theorem”) as a necessary condition for granting the Gödel incompleteness statement to be a theorem just as the statement itself, to be an axiom. Then, the “completeness paper” can be interpreted as relevant to Hilbert mathematics, according to which mathematics and reality as well as arithmetic and set theory are rather entangled or complementary rather than mathematics to obey reality able only to create models of the latter. According to that, both papers (1930; 1931) can be seen as advocating Russell’s logicism or the intensional propositional logic versus both extensional arithmetic and set theory. Reconstructing history of philosophy, Aristotle’s logic and doctrine can be opposed to those of Plato or the pre-Socratic schools as establishing ontology or intensionality versus extensionality. Husserl’s phenomenology can be analogically realized including and particularly as philosophy of mathematics. One can identify propositional logic and set theory by virtue of Gödel’s completeness theorem (1930: “Satz VII”) and even both and arithmetic in the sense of the “compactness theorem” (1930: “Satz X”) therefore opposing the latter to the “incompleteness paper” (1931). An approach identifying homomorphically propositional logic and set theory as the same structure of Boolean algebra, and arithmetic as the “half” of it in a rigorous construction involving information and its unit of a bit. Propositional logic and set theory are correspondingly identified as the shared zero-order logic of the class of all first-order logics and the class at issue correspondingly. Then, quantum mechanics does not need any quantum logics, but only the relation of propositional logic, set theory, arithmetic, and information: rather a change of the attitude into more mathematical, philosophical, and speculative than physical, empirical and experimental. Hilbert’s epsilon calculus can be situated in the same framework of the relation of propositional logic and the class of all mathematical theories. The horizon of Part III investigating Hilbert mathematics (i.e. according to the Pythagorean viewpoint about the world as mathematical) versus Gödel mathematics (i.e. the usual understanding of mathematics as all mathematical models of the world external to it) is outlined

    Hilbert's Metamathematical Problems and Their Solutions

    Get PDF
    This dissertation examines several of the problems that Hilbert discovered in the foundations of mathematics, from a metalogical perspective. The problems manifest themselves in four different aspects of Hilbert’s views: (i) Hilbert’s axiomatic approach to the foundations of mathematics; (ii) His response to criticisms of set theory; (iii) His response to intuitionist criticisms of classical mathematics; (iv) Hilbert’s contribution to the specification of the role of logical inference in mathematical reasoning. This dissertation argues that Hilbert’s axiomatic approach was guided primarily by model theoretical concerns. Accordingly, the ultimate aim of his consistency program was to prove the model-theoretical consistency of mathematical theories. It turns out that for the purpose of carrying out such consistency proofs, a suitable modification of the ordinary first-order logic is needed. To effect this modification, independence-friendly logic is needed as the appropriate conceptual framework. It is then shown how the model theoretical consistency of arithmetic can be proved by using IF logic as its basic logic. Hilbert’s other problems, manifesting themselves as aspects (ii), (iii), and (iv)—most notably the problem of the status of the axiom of choice, the problem of the role of the law of excluded middle, and the problem of giving an elementary account of quantification—can likewise be approached by using the resources of IF logic. It is shown that by means of IF logic one can carry out Hilbertian solutions to all these problems. The two major results concerning aspects (ii), (iii) and (iv) are the following: (a) The axiom of choice is a logical principle; (b) The law of excluded middle divides metamathematical methods into elementary and non-elementary ones. It is argued that these results show that IF logic helps to vindicate Hilbert’s nominalist philosophy of mathematics. On the basis of an elementary approach to logic, which enriches the expressive resources of ordinary first-order logic, this dissertation shows how the different problems that Hilbert discovered in the foundations of mathematics can be solved

    A Possible and Necessary Consistency Proof

    Get PDF
    After Gödel's incompleteness theorems and the collapse of Hilbert's programme Gerhard Gentzen continued the quest for consistency proofs of Peano arithmetic. He considered a finitistic or constructive proof still possible and necessary for the foundations of mathematics. For a proof to be meaningful, the principles relied on should be considered more reliable than the doubtful elements of the theory concerned. He worked out a total of four proofs between 1934 and 1939. This thesis examines the consistency proofs for arithmetic by Gentzen from different angles. The consistency of Heyting arithmetic is shown both in a sequent calculus notation and in natural deduction. The former proof includes a cut elimination theorem for the calculus and a syntactical study of the purely arithmetical part of the system. The latter consistency proof in standard natural deduction has been an open problem since the publication of Gentzen's proofs. The solution to this problem for an intuitionistic calculus is based on a normalization proof by Howard. The proof is performed in the manner of Gentzen, by giving a reduction procedure for derivations of falsity. In contrast to Gentzen's proof, the procedure contains a vector assignment. The reduction reduces the first component of the vector and this component can be interpreted as an ordinal less than epsilon_0, thus ordering the derivations by complexity and proving termination of the process.De begränsningar av formella system som uppdagades av Gödels ofullständighetsteorem år 1931 innebär att Peanoaritmetikens konsistens endast kan bevisas med hjälp av fundamentala principer som inte kan formaliseras inom systemet. Trots att Hilberts finitistiska metoder inte kunde producera ett konsistensbevis, så fortsatte sökandet efter ett bevis med konstruktiva metoder. För att ett bevis skall vara meningsfullt borde principerna som används vara mera pålitliga än de element som betvivlas inom teorin. Avhandlingens titel hänvisar till ett citat av Gentzen då han motiverar behovet av konsistensbevis för första ordningens aritmetik. Gentzen själv producerade fyra konsistensbevis och analyserade hur väl dessa stämde överens med Hilberts program. Gentzen använde konstruktiva metoder i sina bevis, men det debatteras huruvida dessa metoder kan anses vara finitistiska. Det tredje och mest kända beviset presenterar en reduktion av härledningar av kontradiktioner. Med hjälp av transfinit induktion visas att reduktionsprocessen terminerar i en enkel härledning som konstateras vara omöjlig. Därför kan det inte finnas någon härledning av en kontradiktion. Avhandlingen undersöker och jämför Gentzens bevis från olika aspekter. Konsistensen av intuitionistisk Heytingaritmetik bevisas både i sekvenskalkyl och i naturlig deduktion. Det tidigare beviset är i Gentzens anda och innehåller ett snittelimineringsbevis för kalkylen och en syntaktisk studie av den aritmetiska delen av systemet. Det senare beviset påminner om ett normaliseringsbevis och visar terminering med hjälp av en vektortilldelning.Gödelin vuonna 1931 jullkaisemista epätäydellisyyslauseista seurausi rajoituksia formaalisille järjestelmille: Niiden mukaan Peano-aritmetiikan ristiriidattomuus voidaan todistaa ainoastaan periaatteilla, jotka eivät ole formalisoitavissa järjestelmän itsensä sisällä. Vaikka Hilbertin finitistisillä menetelmillä ei siksi pystytty tuottamaan konsistenssitodistusta, todistuksen etsiminen jatkui konstruktiivisillä menetelmillä. Jotta todistus olisi mielekäs, siinä käytettyjen periaatteiden oli oltava luotettavampia kuin teorian itsensä sisältämät periaatteet. Väitöskirjan otsikko viittaa Gentzenin kirjoitukseen, jossa hän perustelee ensimmäisen kertaluvun aritmetiikan konsistenssitodistuksen tarvetta. Gentzen itse laati neljä sellaista konsistenssitodistusta ja analysoi, missä määrin ne olivat yhdenmukaisia Hilbertin ohjelman kanssa. Gentzen käytti konstruktiivisia menetelmiä todistuksissaan ja on paljon väitelty kysymys, voidaanko näitä menetelmiä pitää finitistisinä. Kolmannessa ja tunnetuimassa Gentzenin todistuksessa esitetään ristiriitaisuuksien päättelyn reduktiomenetelmä. Transfiniittistä induktiota käyttämällä osoitetaan, että reduktioprosessi päättyy yksinkertaiseen päättelyyn, jollainen on erikseen todettu mahdottomaksi. Tämän vuoksi ristiriitaa ei voida päätellä. Väitöskirjassa selvitetään ja vertaillaan Gentzenin todistuksia eri näkökulmista. Intuitionistisen Heyting-aritmetiikan ristiriidattomuus osoitetaan sekä sekvenssikalkyylissä että luonnollisessa päättelyssä. Ensimmäinen todistus seuraa Gentzenin henkeä ja siinä sovelletaan ns. leikkaussäänön eliminointitodistusta sekä syntaktista analyysia järjestelmän aritmeettisesta osasta. Jälkimmäinen todistus muistuttaa luonnollisen päättelyn normalisointitodistusta ja näyttää reduktion päättymisen vektorimäärityksen avulla
    corecore