1,373 research outputs found

    An extensional Kleene realizability semantics for the Minimalist Foundation

    Get PDF
    We build a Kleene realizability semantics for the two-level Minimalist Foundation MF, ideated by Maietti and Sambin in 2005 and completed by Maietti in 2009. Thanks to this semantics we prove that both levels of MF are consistent with the (Extended) formal Church Thesis CT. MF consists of two levels, an intensional one, called mTT and an extensional one, called emTT, based on versions of Martin-L\"of's type theory. Thanks to the link between the two levels, it is enough to build a semantics for the intensional level to get one also for the extensional level. Hence here we just build a realizability semantics for the intensional level mTT. Such a semantics is a modification of the realizability semantics in Beeson 1985 for extensional first order Martin-L\"of's type theory with one universe. So it is formalised in Feferman's classical arithmetic theory of inductive definitions. It is called extensional Kleene realizability semantics since it validates extensional equality of type-theoretic functions extFun, as in Beeson 1985. The main modification we perform on Beeson's semantics is to interpret propositions, which are defined primitively in MF, in a proof-irrelevant way. As a consequence, we gain the validity of CT. Recalling that extFun+ CT+ AC are inconsistent over arithmetics with finite types, we conclude that our semantics does not validate the full Axiom of Choice AC. On the contrary, Beeson's semantics does validate AC, being this a theorem of Martin-L\"of's theory, but it does not validate CT. The semantics we present here appears to be the best Kleene realizability semantics for the extensional level emTT of MF. Indeed Beeson's semantics is not an option for emTT since the full AC added to it entails the excluded middle

    Bifinite Chu Spaces

    Full text link
    This paper studies colimits of sequences of finite Chu spaces and their ramifications. Besides generic Chu spaces, we consider extensional and biextensional variants. In the corresponding categories we first characterize the monics and then the existence (or the lack thereof) of the desired colimits. In each case, we provide a characterization of the finite objects in terms of monomorphisms/injections. Bifinite Chu spaces are then expressed with respect to the monics of generic Chu spaces, and universal, homogeneous Chu spaces are shown to exist in this category. Unanticipated results driving this development include the fact that while for generic Chu spaces monics consist of an injective first and a surjective second component, in the extensional and biextensional cases the surjectivity requirement can be dropped. Furthermore, the desired colimits are only guaranteed to exist in the extensional case. Finally, not all finite Chu spaces (considered set-theoretically) are finite objects in their categories. This study opens up opportunities for further investigations into recursively defined Chu spaces, as well as constructive models of linear logic

    Quotient completion for the foundation of constructive mathematics

    Get PDF
    We apply some tools developed in categorical logic to give an abstract description of constructions used to formalize constructive mathematics in foundations based on intensional type theory. The key concept we employ is that of a Lawvere hyperdoctrine for which we describe a notion of quotient completion. That notion includes the exact completion on a category with weak finite limits as an instance as well as examples from type theory that fall apart from this.Comment: 32 page

    Computational contents of classical logic and extensional choice

    Get PDF
    We present here a logical system mini PML which is an extension of HOL with the Curry-Howard correspondence allowing both classical logic and the extensional axiom of choice for natural numbers and higher-order functionals on natural numbers

    On the strength of proof-irrelevant type theories

    Full text link
    We present a type theory with some proof-irrelevance built into the conversion rule. We argue that this feature is useful when type theory is used as the logical formalism underlying a theorem prover. We also show a close relation with the subset types of the theory of PVS. We show that in these theories, because of the additional extentionality, the axiom of choice implies the decidability of equality, that is, almost classical logic. Finally we describe a simple set-theoretic semantics.Comment: 20 pages, Logical Methods in Computer Science, Long version of IJCAR 2006 pape

    Functions out of Higher Truncations

    Get PDF
    In homotopy type theory, the truncation operator ||-||n (for a number n > -2) is often useful if one does not care about the higher structure of a type and wants to avoid coherence problems. However, its elimination principle only allows to eliminate into n-types, which makes it hard to construct functions ||A||n -> B if B is not an n-type. This makes it desirable to derive more powerful elimination theorems. We show a first general result: If B is an (n+1)-type, then functions ||A||n -> B correspond exactly to functions A -> B which are constant on all (n+1)-st loop spaces. We give one "elementary" proof and one proof that uses a higher inductive type, both of which require some effort. As a sample application of our result, we show that we can construct "set-based" representations of 1-types, as long as they have "braided" loop spaces. The main result with one of its proofs and the application have been formalised in Agda.Comment: 15 pages; to appear at CSL'1
    • …
    corecore