12,972 research outputs found

    Control of constraint weights for an autonomous camera

    Get PDF
    Constraint satisfaction based techniques for camera control has the flexibility to add new constraints easily to increase the quality of a shot. We address the problem of deducing and adjusting constraint weights at run time to guide the movement of the camera in an informed and controlled way in response to the requirement of the shot. This enables the control of weights at the frame level. We analyze the mathematical representation of the cost structure of the domain of constraint search so that the constraint solver can search the domain efficiently. We start with a simple tracking shot of a single target. The cost structure of the domain of search suggests the use of a binary search which searches along a curve for 2D and on a surface for 3D by utilizing the information about the cost structure. The problems of occlusion and collision avoidance have also been addressed

    New Geometric Data Structures for Collision Detection

    Get PDF
    We present new geometric data structures for collision detection and more, including: Inner Sphere Trees - the first data structure to compute the peneration volume efficiently. Protosphere - an new algorithm to compute space filling sphere packings for arbitrary objects. Kinetic AABBs - a bounding volume hierarchy that is optimal in the number of updates when the objects deform. Kinetic Separation-List - an algorithm that is able to perform continuous collision detection for complex deformable objects in real-time. Moreover, we present applications of these new approaches to hand animation, real-time collision avoidance in dynamic environments for robots and haptic rendering, including a user study that exploits the influence of the degrees of freedom in complex haptic interactions. Last but not least, we present a new benchmarking suite for both, peformance and quality benchmarks, and a theoretic analysis of the running-time of bounding volume-based collision detection algorithms

    Information and Experience in Metaphor: A Perspective From Computer Analysis

    Get PDF
    Novel linguistic metaphor can be seen as the assignment of attributes to a topic through a vehicle belonging to another domain. The experience evoked by the vehicle is a significant aspect of the meaning of the metaphor, especially for abstract metaphor, which involves more than mere physical similarity. In this article I indicate, through description of a specific model, some possibilities as well as limitations of computer processing directed toward both informative and experiential/affective aspects of metaphor. A background to the discussion is given by other computational treatments of metaphor analysis, as well as by some questions about metaphor originating in other disciplines. The approach on which the present metaphor analysis model is based is consistent with a theory of language comprehension that includes both the intent of the originator and the effect on the recipient of the metaphor. The model addresses the dual problem of (a) determining potentially salient properties of the vehicle concept, and (b) defining extensible symbolic representations of such properties, including affective and other connotations. The nature of the linguistic analysis underlying the model suggests how metaphoric expression of experiential components in abstract metaphor is dependent on the nominalization of actions and attributes. The inverse process of undoing such nominalizations in computer analysis of metaphor constitutes a translation of a metaphor to a more literal expression within the metaphor-nonmetaphor dichotomy

    Conservative From-Point Visibility.

    Get PDF
    Visibility determination has been an important part of the computer graphics research for several decades. First studies of the visibility were hidden line removal algorithms, and later hidden surface removal algorithms. Today’s visibility determination is mainly concentrated on conservative, object level visibility determination techniques. Conservative methods are used to accelerate the rendering process when some exact visibility determination algorithm is present. The Z-buffer is a typical exact visibility determination algorithm. The Z-buffer algorithm is implemented in practically every modern graphics chip. This thesis concentrates on a subset of conservative visibility determination techniques. These techniques are sometimes called from-point visibility algorithms. They attempt to estimate a set of visible objects as seen from the current viewpoint. These techniques are typically used with real-time graphics applications such as games and virtual environments. Concentration is on the view frustum culling and occlusion culling. View frustum culling discards objects that are outside of the viewable volume. Occlusion culling algorithms try to identify objects that are not visible because they are behind some other objects. Also spatial data structures behind the efficient implementations of view frustum culling and occlusion culling are reviewed. Spatial data structure techniques like maintaining of dynamic scenes and exploiting spatial and temporal coherences are reviewed.1. Introduction.............................................................................................................1 2. Visibility Problem...................................................................................................3 3. Scene Organization...............................................................................................10 3.1. Bounding Volume Hierarchies and Scene Graphs.................................10 3.2. Spatial Data Structures ...............................................................................13 3.3. Regular Grids...............................................................................................14 3.4. Quadtrees and Octrees ...............................................................................15 3.5. KD-Trees.......................................................................................................20 3.6. BSP-Trees......................................................................................................23 3.7. Exploiting Spatial and Temporal Coherence ..........................................27 3.8. Dynamic Scenes...........................................................................................30 3.9. Summary ......................................................................................................34 4. View Frustum Culling .........................................................................................35 4.1. View Frustum Construction ......................................................................36 4.2. View Frustum Test......................................................................................37 4.3. Hierarchical View Frustum Culling .........................................................41 4.4. Optimizations ..............................................................................................42 4.5. Summary ......................................................................................................44 5. Occlusion Culling .................................................................................................45 5.1. Fundamental Concepts...............................................................................45 5.2. Occluder Selection.......................................................................................46 5.3. Hardware Occlusion Queries....................................................................49 5.4. Object-Space Methods ................................................................................50 5.5. Image-Space Methods ................................................................................55 5.6. Summary ......................................................................................................64 6. Conclusion.............................................................................................................66 References .................................................................................................................... 7

    Evaluation of machine vision techniques for use within flight control systems

    Get PDF
    In this thesis, two of the main technical limitations for a massive deployment of Unmanned Aerial Vehicle (UAV) have been considered.;The Aerial Refueling problem is analyzed in the first section. A solution based on the integration of \u27conventional\u27 GPS/INS and Machine Vision sensor is proposed with the purpose of measuring the relative distance between a refueling tanker and UAV. In this effort, comparisons between Point Matching (PM) algorithms and Pose Estimation (PE) algorithms have been developed in order to improve the performance of the Machine Vision sensor. A method of integration based on Extended Kalman Filter (EKF) between GPS/INS and Machine Vision system is also developed with the goal of reducing the tracking error in the \u27pre-contact\u27 to contact and refueling phases.;In the second section of the thesis the issue of Collision Identification (CI) is addressed. A proposed solution consists on the use of Optical Flow (OF) algorithms for the detection of possible collisions in the range of vision of a single camera. The effort includes a study of the performance of different Optical Flow algorithms in different scenarios as well as a method to compute the ideal optical flow with the aim of evaluating the algorithms. An analysis on the suitability for a future real time implementation is also performed for all the analyzed algorithms.;Results of the tests show that the Machine Vision technology can be used to improve the performance in the Aerial Refueling problem. In the Collision Identification problem, the Machine Vision has to be integrated with standard sensors in order to be used inside the Flight Control System

    Virtual Reality Simulator for Training in Myringotomy with Tube Placement

    Get PDF
    Myringotomy refers to a surgical incision in the eardrum, and it is often followed by ventilation tube placement to treat middle-ear infections. The procedure is difficult to learn; hence, the objectives of this work were to develop a virtual-reality training simulator, assess its face and content validity, and implement quantitative performance metrics and assess construct validity. A commercial digital gaming engine (Unity3D) was used to implement the simulator with support for 3D visualization of digital ear models and support for major surgical tasks. A haptic arm co-located with the stereo scene was used to manipulate virtual surgical tools and to provide force feedback. A questionnaire was developed with 14 face validity questions focusing on realism and 6 content validity questions focusing on training potential. Twelve participants from the Department of Otolaryngology were recruited for the study. Responses to 12 of the 14 face validity questions were positive. One concern was with contact modeling related to tube insertion into the eardrum, and the second was with movement of the blade and forceps. The former could be resolved by using a higher resolution digital model for the eardrum to improve contact localization. The latter could be resolved by using a higher fidelity haptic device. With regard to content validity, 64% of the responses were positive, 21% were neutral, and 15% were negative. In the final phase of this work, automated performance metrics were programmed and a construct validity study was conducted with 11 participants: 4 senior Otolaryngology consultants and 7 junior Otolaryngology residents. Each participant performed 10 procedures on the simulator and metrics were automatically collected. Senior Otolaryngologists took significantly less time to completion compared to junior residents. Junior residents had 2.8 times more errors as compared to experienced surgeons. The senior surgeons also had significantly longer incision lengths, more accurate incision angles, and lower magnification keeping both the umbo and annulus in view. All metrics were able to discriminate senior Otolaryngologists from junior residents with a significance of p \u3c 0.002. The simulator has sufficient realism, training potential and performance discrimination ability to warrant a more resource intensive skills transference study

    Gravitomagnetism and the Clock Effect

    Get PDF
    The main theoretical aspects of gravitomagnetism are reviewed. It is shown that the gravitomagnetic precession of a gyroscope is intimately connected with the special temporal structure around a rotating mass that is revealed by the gravitomagnetic clock effect. This remarkable effect, which involves the difference in the proper periods of a standard clock in prograde and retrograde circular geodesic orbits around a rotating mass, is discussed in detail. The implications of this effect for the notion of ``inertial dragging'' in the general theory of relativity are presented. The theory of the clock effect is developed within the PPN framework and the possibility of measuring it via spaceborne clocks is examined.Comment: 27 pages, LaTeX, submitted to Proc. Bad Honnef Meeting on: GYROS, CLOCKS, AND INTERFEROMETERS: TESTING GENERAL RELATIVITY IN SPACE (22 - 27 August 1999; Bad Honnef, Germany

    Hand eye coordination in surgery

    Get PDF
    The coordination of the hand in response to visual target selection has always been regarded as an essential quality in a range of professional activities. This quality has thus far been elusive to objective scientific measurements, and is usually engulfed in the overall performance of the individuals. Parallels can be drawn to surgery, especially Minimally Invasive Surgery (MIS), where the physical constraints imposed by the arrangements of the instruments and visualisation methods require certain coordination skills that are unprecedented. With the current paradigm shift towards early specialisation in surgical training and shortened focused training time, selection process should identify trainees with the highest potentials in certain specific skills. Although significant effort has been made in objective assessment of surgical skills, it is only currently possible to measure surgeons’ abilities at the time of assessment. It has been particularly difficult to quantify specific details of hand-eye coordination and assess innate ability of future skills development. The purpose of this thesis is to examine hand-eye coordination in laboratory-based simulations, with a particular emphasis on details that are important to MIS. In order to understand the challenges of visuomotor coordination, movement trajectory errors have been used to provide an insight into the innate coordinate mapping of the brain. In MIS, novel spatial transformations, due to a combination of distorted endoscopic image projections and the “fulcrum” effect of the instruments, accentuate movement generation errors. Obvious differences in the quality of movement trajectories have been observed between novices and experts in MIS, however, this is difficult to measure quantitatively. A Hidden Markov Model (HMM) is used in this thesis to reveal the underlying characteristic movement details of a particular MIS manoeuvre and how such features are exaggerated by the introduction of rotation in the endoscopic camera. The proposed method has demonstrated the feasibility of measuring movement trajectory quality by machine learning techniques without prior arbitrary classification of expertise. Experimental results have highlighted these changes in novice laparoscopic surgeons, even after a short period of training. The intricate relationship between the hands and the eyes changes when learning a skilled visuomotor task has been previously studied. Reactive eye movement, when visual input is used primarily as a feedback mechanism for error correction, implies difficulties in hand-eye coordination. As the brain learns to adapt to this new coordinate map, eye movements then become predictive of the action generated. The concept of measuring this spatiotemporal relationship is introduced as a measure of hand-eye coordination in MIS, by comparing the Target Distance Function (TDF) between the eye fixation and the instrument tip position on the laparoscopic screen. Further validation of this concept using high fidelity experimental tasks is presented, where higher cognitive influence and multiple target selection increase the complexity of the data analysis. To this end, Granger-causality is presented as a measure of the predictability of the instrument movement with the eye fixation pattern. Partial Directed Coherence (PDC), a frequency-domain variation of Granger-causality, is used for the first time to measure hand-eye coordination. Experimental results are used to establish the strengths and potential pitfalls of the technique. To further enhance the accuracy of this measurement, a modified Jensen-Shannon Divergence (JSD) measure has been developed for enhancing the signal matching algorithm and trajectory segmentations. The proposed framework incorporates high frequency noise filtering, which represents non-purposeful hand and eye movements. The accuracy of the technique has been demonstrated by quantitative measurement of multiple laparoscopic tasks by expert and novice surgeons. Experimental results supporting visual search behavioural theory are presented, as this underpins the target selection process immediately prior to visual motor action generation. The effects of specialisation and experience on visual search patterns are also examined. Finally, pilot results from functional brain imaging are presented, where the Posterior Parietal Cortical (PPC) activation is measured using optical spectroscopy techniques. PPC has been demonstrated to involve in the calculation of the coordinate transformations between the visual and motor systems, which establishes the possibilities of exciting future studies in hand-eye coordination
    • …
    corecore