38,881 research outputs found

    Wronskians, dualities and FZZT-Cardy branes

    Get PDF
    The resolvent operator plays a central role in matrix models. For instance, with utilizing the loop equation, all of the perturbative amplitudes including correlators, the free-energy and those of instanton corrections can be obtained from the spectral curve of the resolvent operator. However, at the level of non-perturbative completion, the resolvent operator is generally not sufficient to recover all the information from the loop equations. Therefore it is necessary to find a sufficient set of operators which provide the missing non-perturbative information. In this paper, we study generalized Wronskians of the Baker-Akhiezer systems as a manifestation of these new degrees of freedom. In particular, we derive their isomonodromy systems and then extend several spectral dualities to these systems. In addition, we discuss how these Wronskian operators are naturally aligned on the Kac table. Since they are consistent with the Seiberg-Shih relation, we propose that these new degrees of freedom can be identified as FZZT-Cardy branes in Liouville theory. This means that FZZT-Cardy branes are the bound states of elemental FZZT branes (i.e. the twisted fermions) rather than the bound states of principal FZZT-brane (i.e. the resolvent operator).Comment: 131 pages, 4 figure

    User\u27s Guide to MBC3: Multi-Blade Coordinate Transformation Code for 3-Bladed Wind Turbine

    Full text link
    The dynamics of wind turbine rotor blades are conventionally expressed in rotating frames attached to the individual blades. The tower-nacelle subsystem though, sees the combined effect of all rotor blades, not the individual blades. Also, the rotor responds as a whole to excitations such as aerodynamic gusts, control inputs, and tower-nacelle motion—all of which occur in a nonrotating frame. Multi-blade coordinate transformation (MBC) helps integrate the dynamics of individual blades and express them in a fixed (nonrotating) frame. MBC involves two steps: transforming the rotating degrees of freedom and transforming the equations of motion. Reference 1 details the MBC operation. This guide summarizes the MBC concept and underlying transformations
    • 

    corecore