33,283 research outputs found

    A theory of L1L^1-dissipative solvers for scalar conservation laws with discontinuous flux

    Full text link
    We propose a general framework for the study of L1L^1 contractive semigroups of solutions to conservation laws with discontinuous flux. Developing the ideas of a number of preceding works we claim that the whole admissibility issue is reduced to the selection of a family of "elementary solutions", which are certain piecewise constant stationary weak solutions. We refer to such a family as a "germ". It is well known that (CL) admits many different L1L^1 contractive semigroups, some of which reflects different physical applications. We revisit a number of the existing admissibility (or entropy) conditions and identify the germs that underly these conditions. We devote specific attention to the anishing viscosity" germ, which is a way to express the "Γ\Gamma-condition" of Diehl. For any given germ, we formulate "germ-based" admissibility conditions in the form of a trace condition on the flux discontinuity line x=0x=0 (in the spirit of Vol'pert) and in the form of a family of global entropy inequalities (following Kruzhkov and Carrillo). We characterize those germs that lead to the L1L^1-contraction property for the associated admissible solutions. Our approach offers a streamlined and unifying perspective on many of the known entropy conditions, making it possible to recover earlier uniqueness results under weaker conditions than before, and to provide new results for other less studied problems. Several strategies for proving the existence of admissible solutions are discussed, and existence results are given for fluxes satisfying some additional conditions. These are based on convergence results either for the vanishing viscosity method (with standard viscosity or with specific viscosities "adapted" to the choice of a germ), or for specific germ-adapted finite volume schemes

    Compact Central WENO Schemes for Multidimensional Conservation Laws

    Full text link
    We present a new third-order central scheme for approximating solutions of systems of conservation laws in one and two space dimensions. In the spirit of Godunov-type schemes,our method is based on reconstructing a piecewise-polynomial interpolant from cell-averages which is then advanced exactly in time. In the reconstruction step, we introduce a new third-order as a convex combination of interpolants based on different stencils. The heart of the matter is that one of these interpolants is taken as an arbitrary quadratic polynomial and the weights of the convex combination are set as to obtain third-order accuracy in smooth regions. The embedded mechanism in the WENO-like schemes guarantees that in regions with discontinuities or large gradients, there is an automatic switch to a one-sided second-order reconstruction, which prevents the creation of spurious oscillations. In the one-dimensional case, our new third order scheme is based on an extremely compact point stencil. Analogous compactness is retained in more space dimensions. The accuracy, robustness and high-resolution properties of our scheme are demonstrated in a variety of one and two dimensional problems.Comment: 24 pages, 5 figure

    Hybrid Riemann Solvers for Large Systems of Conservation Laws

    Full text link
    In this paper we present a new family of approximate Riemann solvers for the numerical approximation of solutions of hyperbolic conservation laws. They are approximate, also referred to as incomplete, in the sense that the solvers avoid computing the characteristic decomposition of the flux Jacobian. Instead, they require only an estimate of the globally fastest wave speeds in both directions. Thus, this family of solvers is particularly efficient for large systems of conservation laws, i.e. with many different propagation speeds, and when no explicit expression for the eigensystem is available. Even though only fastest wave speeds are needed as input values, the new family of Riemann solvers reproduces all waves with less dissipation than HLL, which has the same prerequisites, requiring only one additional flux evaluation.Comment: 9 page
    • …
    corecore