66 research outputs found

    Microwave Radiometer Inter-Calibration: Algorithm Development and Application.

    Full text link
    Microwave radiometer inter-calibration is an essential component of any effort to combine measurements from two or more radiometers into one dataset for scientific studies. One spaceborne instrument in low Earth orbit is not sufficient to perform long-term climate studies or to provide measurements more than twice per day at any given location on Earth. Measurements from several radiometers are necessary for analyses over extended temporal and spatial ranges. In order to combine the measurements, the radiometers need to be inter-calibrated due to the instruments having unique instrument designs and calibrations. Inter-calibration ensures that consistent scientific parameters are retrieved from the radiometers. The development of a cold end inter-calibration algorithm is presented. The algorithm makes use of vicarious cold calibration, along with the double difference method, to calculate calibration differences between radiometers. The performance of the algorithm is characterized using data from current conical scanning microwave radiometers. The vicarious cold calibration double difference is able to sufficiently account for design differences between two radiometers including frequency, earth incidence angle, and orbital characteristics. An estimate of the uncertainty in the inter-calibration algorithm is given as a result of potential errors in the geophysical inputs and improper accounting of seasonal and diurnal variability. The vicarious cold calibration double difference method is shown to be a valid and accurate inter-calibration algorithm. Results are compared with calibration differences calculated using alternate algorithms and sufficient agreement is attained. Inter-calibration is shown to be necessary for achieving consistency in retrieved scientific parameters by using the vicarious cold calibration double difference method to inter-calibrate two radiometers that are then used to derive rain accumulations. Inter-calibration results in a significant improvement in the rain accumulation agreement between the radiometers. This validates inter-calibration algorithm development and shows that it has a positive impact on achieving consistency in scientific parameter retrievals.PhDAtmospheric, Oceanic and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/107078/1/rakro_1.pd

    Workshop on Strategies for Calibration and Validation of Global Change Measurements

    Get PDF
    The Committee on Environment and Natural Resources (CENR) Task Force on Observations and Data Management hosted a Global Change Calibration/Validation Workshop on May 10-12, 1995, in Arlington, Virginia. This Workshop was convened by Robert Schiffer of NASA Headquarters in Washington, D.C., for the CENR Secretariat with a view toward assessing and documenting lessons learned in the calibration and validation of large-scale, long-term data sets in land, ocean, and atmospheric research programs. The National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center (GSFC) hosted the meeting on behalf of the Committee on Earth Observation Satellites (CEOS)/Working Group on Calibration/walidation, the Global Change Observing System (GCOS), and the U. S. CENR. A meeting of experts from the international scientific community was brought together to develop recommendations for calibration and validation of global change data sets taken from instrument series and across generations of instruments and technologies. Forty-nine scientists from nine countries participated. The U. S., Canada, United Kingdom, France, Germany, Japan, Switzerland, Russia, and Kenya were represented

    Earth Resources: A continuing bibliography with indexes, issue 36

    Get PDF
    This bibliography lists 576 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between October 1 and December 31, 1982. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Satellite Observed Salinity Distributions at High Latitudes in the Northern Hemisphere: A Comparison of Four Products

    Get PDF
    Global surface ocean salinity measurements have been available since the launch of SMOS in 2009 and coverage was further enhanced with the launch of Aquarius in 2011. In the polar regions where spatial and temporal changes in sea surface salinity (SSS) are deemed important, the data has not been as robustly validated because of the paucity of in situ measurements. This study presents a comparison of four SSS products in the ice-free Arctic region, three using Aquarius data and one using SMOS data. The accuracy of each product is assessed through comparative analysis with ship and other in situ measurements. Results indicate RMS errors ranging between 0.33 and 0.89 psu. Overall, the four products show generally good consistency in spatial distribution with the Atlantic side being more saline than the Pacific side. A good agreement between the ship and satellite measurements were also observed in the low salinity regions in the Arctic Ocean, where SSS in situ measurements are usually sparse, at the end of summer melt seasons. Some discrepancies including biases of about 1 psu between the products in spatial and temporal distribution are observed. These are due in part to differences in retrieval techniques, geophysical filtering, and sea ice and land masks. The monthly SSS retrievals in the Arctic from 2011 to 2015 showed variations (within approximately 1 psu) consistent with effects of sea ice seasonal cycles. This study indicates that spaceborne observations capture the seasonality and interannual variability of SSS in the Arctic with reasonably good accuracy

    Earth remote sensing with SMOS, Aquarius and SMAP missions

    Get PDF
    The first three of a series of new generation satellites operating at L-band microwave frequencies have been launch in the last decade. L-band is particularly sensitive to the presence of water content in the scene under observation, being considered the optimal bandwidth for measuring the Earth's global surface soil moisture (SM) over land and sea surface salinity (SSS) over oceans. Monitoring these two essential climate variables is needed to further improve our understanding of the Earth's water and energy cycles. Additionally, remote sensing at L-band has been proved useful for monitoring the stability in ice sheets and measuring sea ice thickness. The ESA's Soil Moisture and Ocean Salinity (SMOS, 2009-2017) is the first mission specifically launched to monitor SM and SSS. It carries on-board a novel synthetic aperture radiometer with multi-angular and full-polarization capabilities. NASA's Aquarius (2011-2015) was the second mission, devoted to SSS monitoring with a combined real aperture radiometer/scatterometer system that allows correcting for sea surface roughness. NASA's Soil Moisture Active Passive (SMAP, 2015-2018) is the second mission dedicated to measure SM. It carries on-board a real aperture full-polarimetric radiometer and a synthetic aperture radar (SAR) for enhanced spatial resolution and freeze/thaw detection. This Ph.D. Thesis is focused on analyzing the geophysical information that can be obtained from L-band SMOS, Aquarius and SMAP observations. The research activities are structured as follows: -Inter-comparison of radiometer brightness temperatures at selected targets. A novel methodology to measure the consistency between SMOS and Aquarius radiometric data over the entire dynamic range of observations (land, ice and ocean) is proposed. It allows detecting spatial/temporal differences or biases without latitudinal limitations neither cross-overs. This is a necessary step to combine observations from different instruments in a long term dataset for environmental, meteorological, hydrological or climatological studies. -Ice thickness effects on passive remote sensing of Antarctic continental ice. The relationship between Antarctic ice thickness spatial variations and changes detected by SMOS and Aquarius measurements is explored. The emissivity of Antarctica is analyzed to disentangle the role of the geophysical contributions (snow layers at different depths and subglacial lakes) to the observed signal. The stability of the L-band signal in the East Antarctic Plateau, calibration/validation site for microwave satellite missions, is assessed. -Microwave/optical synergy for multi-scale soil moisture sensing. The relationship of SM and land surface temperature (LST) dynamics is evaluated to better understand the fundamental SM-LST link through evapotranspiration and thermal inertia physical processes. A new approach to measure the critical soil moisture from time-series of spaceborne SM and LST is proposed. The synergistic use of SMOS SM and remotely sensed LST for refining SM disaggregation algorithms is also analyzed. -Comparison of passive and active microwave vegetation parameters. Recent research has shown that microwave vegetation opacity, sensitive to biomass and water content, and albedo, related to canopy structure, can be retrieved from passive L-band observations. The relationships between these two parameters and radar-derived vegetation descriptors have been explored using airborne observations from the SMAP Validation Experiment 2012 (SMAPVEX12). The obtained relations could allow for improved SM retrievals in active-passive systems, and also to estimate the vegetation properties at high resolution using SAR observations. The Ph.D. Thesis has been developed within the activities of the Barcelona Expert Centre (BEC). The presented results contribute to the use of L-band remote sensing in different scientific disciplines such as climate, cryosphere, hydrology and ecology.Els primers tres d'una sèrie de satèl·lits de nova generació funcionant a la banda L han sigut llançats a l'última dècada. La banda L es molt sensible a la presència d'aigua a l'escena observada, sent considerada òptima per mesurar la humitat del sòl (SM) i la salinitat del mar (SSS) de manera global a la superfície de la Terra. Monitoritzar aquestes dues variables climàtiques essencials es necessari per millorar el nostre coneixement dels cicles de l'aigua i l'energia. La teledetecció a banda L també ha sigut útil per monitoritzar l'estabilitat de les capes de gel i mesurar el gruix de gel marí. La missió Soil Moisture and Ocean Salinity (SMOS, 2009-2017) de l'ESA és la primera específicament llançada per monitoritzar SM i SSS. Porta un nou radiòmetre d'apertura sintètica amb capacitat multiangular i polarització completa. La missió Aquarius (2011-2015) de la NASA va ser la segona, dedicada a monitoritzar SSS amb un sistema de radiòmetre/escateròmetre d’apertura real que permet corregir la rugositat de la superfície del mar. La missió Soil Moisture Active Passive (SMAP, 2015-2018) de la NASA és la segona dedicada a mesurar SM. Porta un radiòmetre d'apertura real i polarització completa i un radar d'apertura sintètica (SAR) per una millor resolució espaial i detecció de congelació/descongelació. Aquesta tesi està enfocada en analitzar la informació geofísica que pot obtenir-se de les observacions a banda L d'SMOS, Aquarius i SMAP. La seva investigació està estructurada com: -Intercomparació de temperatures de brillantor en zones seleccionades. Es proposa un nou mètode per mesurar la consistència entre les dades radiomètriques d'SMOS i Aquarius sobre el rang dinàmic complet d'observacions (terra, gel, oceà). Això permet detectar diferències espaials/temporals o biaixos sense limitacions latitudinals ni creuaments. Aquest pas es necessari per combinar observacions de diferents instruments en un llarg conjunt de dades per estudis mediambientals, hidrològics o climatològics. -Efecte de gruix de gel en teledetecció de gel continental a l'Antàrtida. S'explora la relació entre les variacions espaials del gruix de gel antàrtic i els canvis detectats a les mesures d'SMOS i Aquarius. L'emissivitat de l'Antàrtida es analitzada per discernir el rol de les contribucions geofísiques (capes de gel a diferents profunditats i llacs subglacials) al senyal observat. S'avalua l'estabilitat del senyal a banda L sobre la zona est de l'altiplà antàrtic, lloc per calibratge/validació de satèl·lits de microones. -Sinèrgia de microones/òptic per teledetecció de SM multiescala. S'avalua la correlació entre la SM i la temperatura de la superfície del sòl (LST) per entendre millor la relació SM-LST a través de processos físics d'evapotranspiració i inèrcia tèrmica. Es proposa un nou mètode per mesurar la humitat crítica utilitzant sèries temporals de SM i LST de satèl·lit. S'analitza l'ús de la SM de SMOS amb la LST de teledetecció per refinar algorismes de desagregació de SM. -Comparació de paràmetres passius i actius de microones relatius a la vegetació. Recent investigació ha mostrat que l'opacitat, sensible a la biomassa i el contingut d'aigua, i l'albedo, relacionat amb l'estructura, poden ser recuperats d'observacions passives a banda L. S'exploren les relacions entre aquests dos paràmetres i estimadors de vegetació derivats de radar utilitzant les observacions d'avió de l'experiment de validació d'SMAP 2012 (SMAPVEX12). Les relacions obtingudes podrien permetre millors recuperacions de SM en sistemes actius/passius i estimar les propietats de la vegetació a alta resolució utilitzant mesures de SAR. La tesi s'ha desenvolupat dins les activitats del Barcelona Expert Centre (BEC). Els resultats presentats contribueixen a l'ús de la banda L a diferents disciplines científiques com la climatologia, la criosfera, la hidrologia i l'ecologia

    Half a century of satellite remote sensing of sea-surface temperature

    Get PDF
    Sea-surface temperature (SST) was one of the first ocean variables to be studied from earth observation satellites. Pioneering images from infrared scanning radiometers revealed the complexity of the surface temperature fields, but these were derived from radiance measurements at orbital heights and included the effects of the intervening atmosphere. Corrections for the effects of the atmosphere to make quantitative estimates of the SST became possible when radiometers with multiple infrared channels were deployed in 1979. At the same time, imaging microwave radiometers with SST capabilities were also flown. Since then, SST has been derived from infrared and microwave radiometers on polar orbiting satellites and from infrared radiometers on geostationary spacecraft. As the performances of satellite radiometers and SST retrieval algorithms improved, accurate, global, high resolution, frequently sampled SST fields became fundamental to many research and operational activities. Here we provide an overview of the physics of the derivation of SST and the history of the development of satellite instruments over half a century. As demonstrated accuracies increased, they stimulated scientific research into the oceans, the coupled ocean-atmosphere system and the climate. We provide brief overviews of the development of some applications, including the feasibility of generating Climate Data Records. We summarize the important role of the Group for High Resolution SST (GHRSST) in providing a forum for scientists and operational practitioners to discuss problems and results, and to help coordinate activities world-wide, including alignment of data formatting and protocols and research. The challenges of burgeoning data volumes, data distribution and analysis have benefited from simultaneous progress in computing power, high capacity storage, and communications over the Internet, so we summarize the development and current capabilities of data archives. We conclude with an outlook of developments anticipated in the next decade or so

    Tendance et variabilité de la vapeur d'eau atmosphérique : un enjeu pour l'étude du niveau moyen océanique

    Get PDF
    La mesure du niveau de la mer par altimétrie satellitaire est perturbée par la présence de vapeur d'eau dans l'atmosphère. Un radiomètre micro-onde, sur les missions altimétriques, est chargé de corriger les mesures de ces perturbations. Les exigences quant à la qualité de cette correction, appelée correction troposphérique humide, sont particulièrement fortes pour l'étude des changements climatiques. Cette thèse a pour objet l'étude des corrections troposphériques humides utilisées dans le cadre des missions altimétriques Jason-1 et Envisat. L'objectif est de caractériser les incertitudes liées à la correction et d'identifier les potentielles anomalies présentes. L'étude faire ressortir une potentielle dérive dans l'étalonnage du radiomètre de la mission Jason-1 après 2008. Pour la mission Envisat, l'analyse met en avant des biais régionaux à l'approche des côtes. Ces derniers sont probablement liés au traitement de la donnée radiométrique.Measurements of the sea surface height are disturbed by the presence of water vapor in the atmosphere. A microwave radiometer, on altimetric missions, is used to correct the measurements from theses disturbances. Requirements on the quality of this correction, called the wet tropospheric correction, are stringent for the survey of climate changes. This thesis concerns the monitoring of the wet tropospheric correction used in the altimetry missions, Jason-1 and Envisat. The aim is to characterize uncertainties related to this correction and to identify potential anomalies. The analysis brings out a potential drift in the radiometer used on Jason-1, after 2008. For the Envisat missions, the presence of biases near coastlines suggests processing related issues

    Clouds and the Earth's Radiant Energy System (CERES) algorithm theoretical basis document

    Get PDF
    The theoretical bases for the Release 1 algorithms that will be used to process satellite data for investigation of the Clouds and the Earth's Radiant Energy System (CERES) are described. The architecture for software implementation of the methodologies is outlined. Volume 1 provides both summarized and detailed overviews of the CERES Release 1 data analysis system. CERES will produce global top-of-the-atmosphere shortwave and longwave radiative fluxes at the top of the atmosphere, at the surface, and within the atmosphere by using the combination of a large variety of measurements and models. The CERES processing system includes radiance observations from CERES scanning radiometers, cloud properties derived from coincident satellite imaging radiometers, temperature and humidity fields from meteorological analysis models, and high-temporal-resolution geostationary satellite radiances to account for unobserved times. CERES will provide a continuation of the ERBE record and the lowest error climatology of consistent cloud properties and radiation fields. CERES will also substantially improve our knowledge of the Earth's surface radiation budget

    Space Applications Institute Annual Report 1996. EUR 17355

    Get PDF
    • …
    corecore