22 research outputs found

    Type-2 neutrosophic number based multi-attributive border approximation area comparison (MABAC) approach for offshore wind farm site selection in USA.

    Get PDF
    The technical, logistical, and ecological challenges associated with offshore wind development necessitate an extensive site selection analysis. Technical parameters such as wind resource, logistical concerns such as distance to shore, and ecological considerations such as fisheries all must be evaluated and weighted, in many cases with incomplete or uncertain data. Making such a critical decision with severe potential economic and ecologic consequences requires a strong decision-making approach to ultimately guide the site selection process. This paper proposes a type-2 neutrosophic number (T2NN) fuzzy based multi-criteria decision-making (MCDM) model for offshore wind farm (OWF) site selection. This approach combines the advantages of neutrosophic numbers sets, which can utilize uncertain and incomplete information, with a multi-attributive border approximation area comparison that provides formulation flexibility and easy calculation. Further, this study develops and integrates a techno-economic model for OWFs in the decision-making. A case study is performed to evaluate and rank five proposed OWF sites off the coast of New Jersey. To validate the proposed model, a comparison against three alternative T2NN fuzzy based models is performed. It is demonstrated that the implemented model yields the same ranking order as the alternative approaches. Sensitivity analysis reveals that changing criteria weightings does not affect the ranking order

    A Neutrosophic Clinical Decision-Making System for Cardiovascular Diseases Risk Analysis

    Get PDF
    Cardiovascular diseases are the leading cause of death worldwide. Early diagnosis of heart disease can reduce this large number of deaths so that treatment can be carried out. Many decision-making systems have been developed, but they are too complex for medical professionals. To target these objectives, we develop an explainable neutrosophic clinical decision-making system for the timely diagnose of cardiovascular disease risk. We make our system transparent and easy to understand with the help of explainable artificial intelligence techniques so that medical professionals can easily adopt this system. Our system is taking thirtyfive symptoms as input parameters, which are, gender, age, genetic disposition, smoking, blood pressure, cholesterol, diabetes, body mass index, depression, unhealthy diet, metabolic disorder, physical inactivity, pre-eclampsia, rheumatoid arthritis, coffee consumption, pregnancy, rubella, drugs, tobacco, alcohol, heart defect, previous surgery/injury, thyroid, sleep apnea, atrial fibrillation, heart history, infection, homocysteine level, pericardial cysts, marfan syndrome, syphilis, inflammation, clots, cancer, and electrolyte imbalance and finds out the risk of coronary artery disease, cardiomyopathy, congenital heart disease, heart attack, heart arrhythmia, peripheral artery disease, aortic disease, pericardial disease, deep vein thrombosis, heart valve disease, and heart failure. There are five main modules of the system, which are neutrosophication, knowledge base, inference engine, de-neutrosophication, and explainability. To demonstrate the complete working of our system, we design an algorithm and calculates its time complexity. We also present a new de-neutrosophication formula, and give comparison of our the results with existing methods

    Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making

    Get PDF
    Recently proposed q-rung orthopair fuzzy set (q-ROFS) is a powerful and effective tool to describe fuzziness, uncertainty and vagueness. The prominent feature of q-ROFS is that the sum and square sum of membership and non-membership degrees are allowed to be greater than one with the sum of qth power of the membership degree and qth power of the non-membership degree is less than or equal to one. This characteristic makes q-ROFS more powerful and useful than intuitionistic fuzzy set (IFS) and Pythagorean fuzzy set (PFS). The aim of this paper is to develop some aggregation operators for fusing q-rung orthopair fuzzy information. As the Muirhead mean (MM) is considered as a useful aggregation technology which can capture interrelationships among all aggregated arguments, we extend the MM to q-rung orthopair fuzzy environment and propose a family of q-rung orthopair fuzzy Muirhead mean operators. Moreover, we investigate some desirable properties and special cases of the proposed operators. Further, we apply the proposed operators to solve multi-attribute group decision making (MAGDM) problems. Finally, a numerical instance as well as some comparative analysis are provided to demonstrate the validity and superiorities of the proposed method

    A Multiple Attribute Decision Making Approach Based on New Similarity Measures of Interval-valued Hesitant Fuzzy Sets

    Get PDF
    Hesitant fuzzy sets, as an extension of fuzzy sets to deal with uncertainty, have attracted much attention since its introduction, in both theory and application aspects. The present work is focused on the interval-valued hesitant fuzzy sets (IVHFSs) to manage additional uncertainty. Now that distance and similarity as a kind of information measures are essential and important numerical indexes in fuzzy set theory and all their extensions, the present work aims at investigating distance and similarity measures in the IVHFSs and then employing them into multiple attribute decision making application. To begin with, II-type generalized interval-valued hesitant fuzzy distance is firstly introduced in the IVHFS, along with its properties and its relationships with the traditional Hamming-Distance and the Euclidean distance. Afterwards, another interval-valued hesitant fuzzy Lp distance based on Lp metric is proposed and its relationship with the Hausdorff distance is discussed. In addition, different from most of similarity measures with dependent on the corresponding distances, a new similarity measure based on set-theoretic approach for IVHFSs is introduced and its properties are discussed; especially, a relative similarity measure is proposed based on the positive ideal IVHFS and the negative ideal IVHFS. Finally, we describe how the IVHFS and its relative similarity measure can be applied to multiple attribute decision making. A numerical example is then provided to illustrate the effectiveness of the proposed method

    The Encyclopedia of Neutrosophic Researchers, 5th Volume

    Get PDF
    Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements. There are about 7,000 neutrosophic researchers, within 89 countries around the globe, that have produced about 4,000 publications and tenths of PhD and MSc theses, within more than two decades. This is the fifth volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation, with an introduction contains a short history of neutrosophics, together with links to the main papers and books

    Algebraic Structures of Neutrosophic Triplets, Neutrosophic Duplets, or Neutrosophic Multisets

    Get PDF
    Neutrosophy (1995) is a new branch of philosophy that studies triads of the form (, , ), where is an entity {i.e. element, concept, idea, theory, logical proposition, etc.}, is the opposite of , while is the neutral (or indeterminate) between them, i.e., neither nor .Based on neutrosophy, the neutrosophic triplets were founded, which have a similar form (x, neut(x), anti(x)), that satisfy several axioms, for each element x in a given set.This collective book presents original research papers by many neutrosophic researchers from around the world, that report on the state-of-the-art and recent advancements of neutrosophic triplets, neutrosophic duplets, neutrosophic multisets and their algebraic structures – that have been defined recently in 2016 but have gained interest from world researchers. Connections between classical algebraic structures and neutrosophic triplet / duplet / multiset structures are also studied. And numerous neutrosophic applications in various fields, such as: multi-criteria decision making, image segmentation, medical diagnosis, fault diagnosis, clustering data, neutrosophic probability, human resource management, strategic planning, forecasting model, multi-granulation, supplier selection problems, typhoon disaster evaluation, skin lesson detection, mining algorithm for big data analysis, etc
    corecore