4,407 research outputs found

    On some problems related to 2-level polytopes

    Get PDF
    In this thesis we investigate a number of problems related to 2-level polytopes, in particular from the point of view of the combinatorial structure and the extension complexity. 2-level polytopes were introduced as a generalization of stable set polytopes of perfect graphs, and despite their apparently simple structure, are at the center of many open problems ranging from information theory to semidefinite programming. The extension complexity of a polytope P is a measure of the complexity of representing P: it is the smallest size of an extended formulation of P, which in turn is a linear description of a polyhedron that projects down to P. In the first chapter, we examine several classes of 2-level polytopes arising in combinatorial settings and we prove a relation between the number of vertices and facets of such polytopes, which is conjectured to hold for all 2-level polytopes. The proofs are obtained through an improved understanding of the combinatorial structure of such polytopes, which in some cases leads to results of independent interest. In the second chapter, we study the extension complexity of a restricted class of 2-level polytopes, the stable set polytopes of bipartite graphs, for which we obtain non-trivial lower and upper bounds. In the third chapter we study slack matrices of 2-level polytopes, important combinatorial objects related to extension complexity, defining operations on them and giving algorithms for the following recognition problem: given a matrix, determine whether it is a slack matrix of some special class of 2-level polytopes. In the fourth chapter we address the problem of explicitly obtaining small size extended formulations whose existence is guaranteed by communication protocols. In particular we give an algorithm to write down extended formulations for the stable set polytope of perfect graphs, making a well known result by Yannakakis constructive, and we extend this to all deterministic protocols

    On the existence of 0/1 polytopes with high semidefinite extension complexity

    Full text link
    In Rothvo\ss{} it was shown that there exists a 0/1 polytope (a polytope whose vertices are in \{0,1\}^{n}) such that any higher-dimensional polytope projecting to it must have 2^{\Omega(n)} facets, i.e., its linear extension complexity is exponential. The question whether there exists a 0/1 polytope with high PSD extension complexity was left open. We answer this question in the affirmative by showing that there is a 0/1 polytope such that any spectrahedron projecting to it must be the intersection of a semidefinite cone of dimension~2^{\Omega(n)} and an affine space. Our proof relies on a new technique to rescale semidefinite factorizations

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    On the extension complexity of combinatorial polytopes

    Full text link
    In this paper we extend recent results of Fiorini et al. on the extension complexity of the cut polytope and related polyhedra. We first describe a lifting argument to show exponential extension complexity for a number of NP-complete problems including subset-sum and three dimensional matching. We then obtain a relationship between the extension complexity of the cut polytope of a graph and that of its graph minors. Using this we are able to show exponential extension complexity for the cut polytope of a large number of graphs, including those used in quantum information and suspensions of cubic planar graphs.Comment: 15 pages, 3 figures, 2 table
    corecore