1,009 research outputs found

    Extensible language implementation with object algebras (short paper)

    Full text link

    Flattening an object algebra to provide performance

    Get PDF
    Algebraic transformation and optimization techniques have been the method of choice in relational query execution, but applying them in object-oriented (OO) DBMSs is difficult due to the complexity of OO query languages. This paper demonstrates that the problem can be simplified by mapping an OO data model to the binary relational model implemented by Monet, a state-of-the-art database kernel. We present a generic mapping scheme to flatten data models and study the case of straightforward OO model. We show how flattening enabled us to implement a query algebra, using only a very limited set of simple operations. The required primitives and query execution strategies are discussed, and their performance is evaluated on the 1-GByte TPC-D (Transaction-processing Performance Council's Benchmark D), showing that our divide-and-conquer approach yields excellent result

    Evolving Languages with Object Algebras

    Get PDF
    Object Algebras are a programming technique for the extensible implementation of recursive data types. This extended abstract introduces Object Algebras and shows how they could be used to develop highly evolvable software languages. The paper is concluded with a discussin of directions for further research

    Scrap your boilerplate with object algebras

    Get PDF
    htmlabstractTraversing complex Abstract Syntax Trees (ASTs) typically requires large amounts of tedious boilerplate code. For many operations most of the code simply walks the structure, and only a small portion of the code implements the functional- ity that motivated the traversal in the first place. This paper presents a type-safe Java framework called Shy that removes much of this boilerplate code. In Shy Object Algebras are used to describe complex and extensible AST structures. Using Java annotations Shy generates generic boilerplate code for various types of traversals. For a concrete traversal, users of Shy can then inherit from the generated code and over- ride only the interesting cases. Consequently, the amount of code that users need to write is significantly smaller. Moreover, traversals using the Shy framework are also much more structure shy, becoming more adaptive to future changes or extensions to the AST structure. To prove the effectiveness of the approach, we applied Shy in the implementation of a domain-specific questionnaire language. Our results show that for a large number of traversals there was a significant reduction in the amount of user-defined code

    Modular interpreters with implicit context propagation

    Get PDF
    Modular interpreters are a crucial first step towards component-based language development: instead of writing language interpreters from scratch, they can be assembled from reusable, semantic building blocks. Unfortunately, traditional language interpreters can be hard to extend because different language constructs may require different interpreter signatures. For instance, arithmetic interpreters produce a value without any context information, whereas binding constructs require an additional environment.In this paper, we present a practical solution to this problem based on implicit context propagation. By structuring denotational-style interpreters as Object Algebras, base interpreters can be retroactively lifted into new interpreters that have an extended signature. The additional parameters are implicitly propagated behind the scenes, through the evaluation of the base interpreter.Interpreter lifting enables a flexible style of modular and extensible language development. The technique works in mainstream object-oriented languages, does not sacrifice type safety or separate compilation, and can be easily automated, for instance using macros in Scala or dynamic proxies in Java. We illustrate implicit context propagation using a modular definition of Featherweight Java and its extension to support side-effects, and an extensible domain-specific language for state machines. We finally investigate the performance overhead of lifting by running the DeltaBlue benchmark program in Javascript on top of a modular implementation of LambdaJS and a dedicated micro-benchmark. The results show that lifting makes interpreters roughly twice as slow because of additional call overhead. Further research is needed to eliminate this performance penalty

    EVF: An Extensible and Expressive Visitor Framework for Programming Language Reuse

    Get PDF

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system
    • …
    corecore