49 research outputs found

    Extensible Component Based Architecture for FLASH, A Massively Parallel, Multiphysics Simulation Code

    Full text link
    FLASH is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH has been successful because its capabilities have been driven by the needs of scientific applications, without compromising maintainability, performance, and usability. In its newest incarnation, FLASH3 consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other, resulting in greater flexibility. Further, a simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework providing verifiability, combined with a rigorous software maintenance process, allow the code to operate simultaneously in the dual mode of production and development. In this paper we describe the FLASH3 architecture, with emphasis on solutions to the more challenging conflicts arising from solver complexity, portable performance requirements, and legacy codes. We also include results from user surveys conducted in 2005 and 2007, which highlight the success of the code.Comment: 33 pages, 7 figures; revised paper submitted to Parallel Computin

    Electron acceleration by wave turbulence in a magnetized plasma

    Get PDF
    Astrophysical shocks are commonly revealed by the non-thermal emission of energetic electrons accelerated in situ 1-3 . Strong shocks are expected to accelerate particles to very high energies 4-6 ; however, they require a source of particles with velocities fast enough to permit multiple shock crossings. While the resulting diffusive shock acceleration 4 process can account for observations, the kinetic physics regulating the continuous injection of non-thermal particles is not well understood. Indeed, this injection problem is particularly acute for electrons, which rely on high-frequency plasma fluctuations to raise them above the thermal pool 7,8 . Here we show, using laboratory laser-produced shock experiments, that, in the presence of a strong magnetic field, significant electron pre-heating is achieved. We demonstrate that the key mechanism in producing these energetic electrons is through the generation of lower-hybrid turbulence via shock-reflected ions. Our experimental results are analogous to many astrophysical systems, including the interaction of a comet with the solar wind 9 , a setting where electron acceleration via lower-hybrid waves is possible

    The excitation of 5-min oscillations in the solar corona

    Full text link
    We aim to study excitation of the observed 5-min oscillations in the solar corona by localized pulses that are launched in the photosphere. We solve the full set of nonlinear one-dimensional Euler equations numerically for the velocity pulse propagating in the solar atmosphere that is determined by the realistic temperature profile. Numerical simulations show that an initial velocity pulse quickly steepens into a leading shock, while the nonlinear wake in the chromosphere leads to the formation of consecutive pulses. The time interval between arrivals of two neighboring pulses to a detection point in the corona is approximately 5 min. Therefore, the consecutive pulses may result in the 5-min oscillations that are observed in the solar corona. The 5-min oscillations observed in the solar corona can be explained in terms of consecutive shocks that result from impulsive triggers launched within the solar photosphere by granulation and/or reconnection.Comment: 5 pages, 2 figures, accepted in A&

    Supersonic plasma turbulence in the laboratory

    Get PDF
    The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers
    corecore