1,694 research outputs found

    Mercury: a Model for Live Remote Debugging in Reflective Languages

    Get PDF
    Remote debugging facilities are a technical necessity for devices that have limited computing power to run an IDE (e.g., smartphones), lack appropriate input/output interfaces (display, keyboard, mouse) for programming (e.g mobile robots) or are simply unreachable for local development (e.g cloud-servers). Yet remote debugging solutions can prove awkward to use due to their distributed nature. Empirical studies show us that on average 10.5 minutes per coding hour (over five 40-hour work weeks per year) are spend for re-deploying applications while fixing bugs or improving functionality. Moreover current solutions lack facilities that would otherwise be available in a local setting because its difficult to reproduce them remotely. Our work identifies three desirable properties that an ideal solution for remote debugging should exhibit, namely: run-time evolution, semantic instrumentation and adaptable distribution. Given these properties we propose and validate Mercury, a live remote debugging model and architecture for reflective OO languages

    Debugging Scandal: The Next Generation

    Get PDF
    In 1997, the general lack of debugging tools was termed "the debugging scandal". Today, as new languages are emerging to support software evolution, once more debugging support is lagging. The powerful abstractions offered by new languages are compiled away and transformed into complex synthetic structures. Current debugging tools only allow inspection in terms of this complex synthetic structure; they do not support observation of program executions in terms of the original development abstractions. In this position paper, we outline this problem and present two emerging lines of research that ease the burden for debugger implementers and enable developers to debug in terms of development abstractions. For both approaches we identify language-independent debugger components and those that must be implemented for every new language. One approach restores the abstractions by a tool external to the program. The other maintains the abstractions by using a dedicated execution environment, supporting the relevant abstractions. Both approaches have the potential of improving debugging support for new languages. We discuss the advantages and disadvantages of both approaches, outline a combination thereof and also discuss open challenges

    Extensible Debuggers for Extensible Languages

    Full text link

    Developing a Generic Debugger for Advanced-Dispatching Languages

    Get PDF
    Programming-language research has introduced a considerable number of advanced-dispatching mechanisms in order to improve modularity. Advanced-dispatching mechanisms allow changing the behavior of a function without modifying their call sites and thus make the local behavior of code less comprehensible. Debuggers are tools, thus needed, which can help a developer to comprehend program behavior but current debuggers do not provide inspection of advanced-\ud dispatching-related language constructs. In this paper, we present a debugger which extends a traditional Java debugger with the ability of debugging an advanced-dispatching language constructs and a user interface for inspecting this

    Holistic debugging - enabling instruction set simulation for software quality assurance

    Get PDF
    We present holistic debugging, a novel method for observing execution of complex and distributed software. It builds on an instruction set simulator, which provides reproducible experiments and non-intrusive probing of state in a distributed system. Instruction set simulators, however, only provide low-level information, so a holistic debugger contains a translation framework that maps this information to higher abstraction level observation tools, such as source code debuggers. We have created Nornir, a proof-of-concept holistic debugger, built on the simulator Simics. For each observed process in the simulated system, Nornir creates an abstraction translation stack, with virtual machine translators that map machine-level storage contents (e.g. physical memory, registers) provided by Simics, to application-level data (e.g. virtual memory contents) by parsing the data structures of operating systems and virtual machines. Nornir includes a modified version of the GNU debugger (GDB), which supports non-intrusive symbolic debugging of distributed applications. Nornir's main interface is a debugger shepherd, a programmable interface that controls multiple debuggers, and allows users to coherently inspect the entire state of heterogeneous, distributed applications. It provides a robust observation platform for construction of new observation tools
    • …
    corecore