66 research outputs found

    Inter-Domain Authentication for Seamless Roaming in Heterogeneous Wireless Networks

    Get PDF
    The convergence of diverse but complementary wireless access technologies and inter-operation among administrative domains have been envisioned as crucial for the next generation wireless networks that will provide support for end-user devices to seamlessly roam across domain boundaries. The integration of existing and emerging heterogeneous wireless networks to provide such seamless roaming requires the design of a handover scheme that provides uninterrupted service continuity while facilitating the establishment of authenticity of the entities involved. The existing protocols for supporting re-authentication of a mobile node during a handover across administrative domains typically involve several round trips to the home domain, and hence introduce long latencies. Furthermore, the existing methods for negotiating roaming agreements to establish inter-domain trust rely on a lengthy manual process, thus, impeding seamless roaming across multiple domains in a truly heterogeneous wireless network. In this thesis, we present a new proof-token based authentication protocol that supports quick re-authentication of a mobile node as it moves to a new foreign domain without involving communication with the home domain. The proposed proof-token based protocol can also support establishment of spontaneous roaming agreements between a pair of domains that do not already have a direct roaming agreement, thus allowing flexible business models to be supported. We describe details of the new authentication architecture, the proposed protocol, which is based on EAP-TLS and compare the proposed protocol with existing protocols

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test

    Secure Device Bootstrapping with the Nimble Out of Band Authentication Protocol

    Get PDF
    The smart personal and business appliances which form the Internet of Things are expected to become ubiquitous and to make our daily life more convenient. Most of these devices are connected though wireless networks to cloud-based online services. However, such devices may be vulnerable to various attacks which could compromise the users’ security and privacy and even cause physical harm. Therefore, securing the network connection for the devices is of utmost importance. In order to secure the network connections, the devices need to be configured with the necessary keys and other connection parameters. There is not yet any widely adopted generic solution for this secure bootstrapping. One proposed solution is out-of-band (OOB) authentication with a protocol called EAP-NOOB, which is a new method for the EAP and IEEE 802.1X authentication framework. The goal of this thesis is to build a prototype of the EAP-NOOB protocol and deploy the prototype to test it with the real-world scenarios. The protocol requires no a-priori information either about the device or the user is necessary for the bootstrapping. Instead, the user’s ownership of the device is established during the bootstrapping process. The protocol was implemented both by adding support for the new EAP method into existing open-source software, the commonly used WPA_Supplicant and Hostapd packages. We also implemented a web interface for the back-end authentication server, which works in tandem with the AAA server, and out-of-band channels based on dynamic QR codes and NFC tags. We used the prototype to test and demonstrate the EAP-NOOB protocol, including its usability and authentication latency. The bootstrapping procedure can be completed in less than a minute in most cases. The main results of the project are the EAP-NOOB implementation and various improvements and clarifications to the protocol specification. These results are an essential part of the protocol standardization process at IETF

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Patterns in network security: an analysis of architectural complexity in securing recursive inter-network architecture networks

    Full text link
    Recursive Inter-Network Architecture (RINA) networks have a shorter protocol stack than the current architecture (the Internet) and rely instead upon separation of mech- anism from policy and recursive deployment to achieve large scale networks. Due to this smaller protocol stack, fewer networking mechanisms, security or otherwise, should be needed to secure RINA networks. This thesis examines the security proto- cols included in the Internet Protocol Suite that are commonly deployed on existing networks and shows that because of the design principles of the current architecture, these protocols are forced to include many redundant non-security mechanisms and that as a consequence, RINA networks can deliver the same security services with substantially less complexity

    From Dragondoom to Dragonstar: Side-channel Attacks and Formally Verified Implementation of WPA3 Dragonfly Handshake

    Full text link
    It is universally acknowledged that Wi-Fi communications are important to secure. Thus, the Wi-Fi Alliance published WPA3 in 2018 with a distinctive security feature: it leverages a Password-Authenticated Key Exchange (PAKE) protocol to protect users' passwords from offline dictionary attacks. Unfortunately, soon after its release, several attacks were reported against its implementations, in response to which the protocol was updated in a best-effort manner. In this paper, we show that the proposed mitigations are not enough, especially for a complex protocol to implement even for savvy developers. Indeed, we present **Dragondoom**, a collection of side-channel vulnerabilities of varying strength allowing attackers to recover users' passwords in widely deployed Wi-Fi daemons, such as hostap in its default settings. Our findings target both password conversion methods, namely the default probabilistic hunting-and-pecking and its newly standardized deterministic alternative based on SSWU. We successfully exploit our leakage in practice through microarchitectural mechanisms, and overcome the limited spatial resolution of Flush+Reload. Our attacks outperform previous works in terms of required measurements. Then, driven by the need to end the spiral of patch-and-hack in Dragonfly implementations, we propose **Dragonstar**, an implementation of Dragonfly leveraging a formally verified implementation of the underlying mathematical operations, thereby removing all the related leakage vector. Our implementation relies on HACL*, a formally verified crypto library guaranteeing secret-independence. We design Dragonstar, so that its integration within hostap requires minimal modifications to the existing project. Our experiments show that the performance of HACL*-based hostap is comparable to OpenSSL-based, implying that Dragonstar is both efficient and proved to be leakage-free.Comment: Accepted at 2023 IEEE 8th European Symposium on Security and Privacy (EuroS&P

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    A Distributed Public Key Infrastructure Based on Threshold Cryptography for the HiiMap Next Generation Internet Architecture

    Get PDF
    In this article, a security extension for the HiiMap Next Generation Internet Architecture is presented. We regard a public key infrastructure which is integrated into the mapping infrastructure of the locator/identifier-split addressing scheme. The security approach is based on Threshold Cryptography which enables a sharing of keys among the mapping servers. Hence, a more trustworthy and fair approach for a Next Generation Internet Architecture as compared to the state of the art approach is fostered. Additionally, we give an evaluation based on IETF AAA recommendations for security-related systems
    • 

    corecore