1,230 research outputs found

    Mitigating Hotspot Problem Using Chaotic Salp Swarm Algorithm for Energy Efficient IoT Assisted Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSN) and Internet of Things (IoT) continued to be pro-active study due to their far reaching applications and also a crucial technology for ubiquitous living. In WSN, energy awareness becomes a significant design problem. Clustering can be defined as a renowned energy-efficient method and renders a lot of benefits like energy competence, less delay, scalability, and lifetime; but it resulted in hot spot problems. To sort out this problem a method called unequal clustering is designed. In unequal clustering, the cluster size differs with the Base Station (BS) distance. In this study, a new Chaotic Salp Swarm Algorithm Based Unequal Clustering Approach (CSSA-UCA) methodology to resolve hot spot issues in IoT-assisted WSN is proposed. The major objective of the CSSA-UCA methodology lies in the effectual identification of CHs and unequal cluster sizes. To accomplish this, the CSSA-UCA technique initially derives the CSSA by the incorporation of chaotic notions into the conventional SSA. At the same time, a fitness function incorporating multiple input parameters was considered for unequal cluster construction. A wide range of experimental result analyses is performed to exhibit the supremacy of the CSSA-UCA technique. The experimental results stated that the CSSA-UCA technique proficiently balances energy accretion and improves the network lifetime

    Gafor : Genetic algorithm based fuzzy optimized re-clustering in wireless sensor networks

    Get PDF
    Acknowledgments: The authors are grateful to the Deanship of Scientific Research at King Saud University for funding this work through Vice Deanship of Scientific Research Chairs: Chair of Pervasive and Mobile Computing. Funding: This research was funded by King Saud University in 2020.Peer reviewedPublisher PD

    Development Of Energy-Balanced Node Deployment Strategies To Reduce Energy Hole Problem In Wireless Sensor Networks

    Get PDF
    Rangkaian sensor tanpa wayar (WSNs) banyak-ke-satu (berasaskan korona), mempunyai banyak aplikasi yang berpotensi termasuk pemantauan alam sekitar, pemantauan kesihatan bioperubatan, dan pengumpulan data. Many-to-one corona-based Wireless Sensor Networks (WSNs) have many potential applications, including environmental monitoring, biomedical health monitoring, and data gathering. In a many-to-one network, sensor nodes located around the sink to relay data, consume more energy and die earlier compared to those in remote locations

    Improvement of non-uniform node deployment mechanism for corona-based wireless sensor networks

    Get PDF
    The promising technology of Wireless Sensor Networks (WSNs), lots of applications have been developed for monitoring and tracking in military, commercial, and educational environments. Imbalance energy of sensors causes significant reduction in the lifetime of the network. In corona-based Wireless Sensor Networks (WSNs), nodes that are positioned in coronas near the sink drain their energy faster than others as they are burdened with relaying traffic come from distant coronas forming energy holes in the network. This situation shows significant effects on the network efficiency in terms of lifetime and energy consumption. The network may stop operation prematurely even though there is much energy left unused at the distant nodes. In this thesis, non-uniform node deployments and energy provisioning strategies are proposed to mitigate energy holes problem. These strategies concerns the optimal number of sensors required in each corona in order to balance the energy consumption and to meet the coverage and connectivity requirements in the network. In order to achieve this aim, the number of sensors should be optimized to create sub-balanced coronas in the sense of energy consumption. The energy provisioning technique is proposed for harmonizing the energy consumption among coronas by computing the extra needed energy in every corona. In the proposed mechanism, the energy required in each corona for balanced energy consumption is computed by determining the initial energy in each node with respect to its corona, and according to the corona load while satisfying the network coverage and connectivity requirements. The theoretical design and modeling of the proposed sensors placement strategy promise a considerable improvement in the lifetime of corona-based networks. The proposed technique could improve the network lifetime noticeably via fair balancing of energy consumption ratio among coronas about 9.4 times more than other work. This is confirmed by the evaluation results that have been showed that the proposed solution offers efficient energy distribution that can enhance the lifetime about 40% compared to previous research works

    Energy efficient intelligent routing in WSN using dominant genetic algorithm

    Get PDF
    In the current era of wireless sensor network development, among the various challenging issues, the life enhancement has obtained the prime interest. Reason is clear and straight: the battery operated sensors do have limited period of life hence to keep the network active as much as possible, life of network should be larger. To enhance the life of the network, at different level different approaches has been applied, broadly defining the proper scheduling of sensors and defining the energy efficient communication. In this paper heuristic based energy efficient communication approch has applied. A new development in the Genetic algorithm has presented and called as Dominant Genetic algorithm to determine the optimum energy efficient routing path between sensor nodes and to define the optimal energy efficient trajectory for mobile data gathering node. Dominancy of high fitness solution has included in the Genetic algorithm because of its natural existence. The proposed solution has applied the connection oriented crossover and mutation operator to maintain the feasibility of generated solution. The proposed solution has applied with various simulation experiments under two different scenarios: in first case energy efficient routes among the sensors have explored to deliver the information from source sensor to the sink node and in second case, energy efficient route among all local data hubs for mobile data gathering node has obtained. The proposed solution performances have been analyzed quantitatively and analytically. It has observed with various experimental results that proposed method not only has delivered the better solution but also has faster convergence and high level of reliability in compared to conventional form of Genetic algorithm

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS
    corecore