18,650 research outputs found

    Energy Storage Technologies for Smoothing Power Fluctuations in Marine Current Turbines

    Get PDF
    With regard to marine renewable energies, significant electrical power can be extracted from marine tidal current. However, the power harnessed by a marine current turbine varies due to the periodicity of the tidal phenomenon and could be highly fluctuant caused by swell effect. To improve the power quality and make the marine current generation system more reliable, energy storage systems will play a crucial role. In this paper, the power fluctuation phenomenon is described and the state of art of energy storage technologies is presented. Characteristics of various energy storage technologies are analyzed and compared for marine application. The omparison shows that high-energy batteries like sodiumsulphur battery and flow battery are favorable for smoothing the long-period power fluctuation due to the tide phenomenon while supercapacitors and flywheels are suitable for eliminating short-period power disturbances due to swell or turbulence phenomena. It means that hybrid storage technologies are needed for achieving optimal performance in marine current energy systems

    Rural electrification in central america and east africa, two case studies of sustainable microgrids

    Get PDF
    This paper deals with the electrification of rural villages in developing countries using Sustainable Energy Systems. The rural electrification feasibility study is done using Hybrid Optimization Model for Electric Renewable PRO (HOMER PRO). The HOMER PRO energy modelling software is an optimization software improved by U.S. National Renewable Energy Laboratory. It helps in designing, comparing and optimizing the design of power generation technologies. In this paper, two rural electrification case studies are modelled and analysed using HOMER PRO. Technical and economic evaluation criteria are applied to study the feasibility of a micro-hydro plant in El Díptamo (Honduras), and a hybrid plant composed of photovoltaic module arrays, Diesel generators, and flow batteries, in a small island on Victoria Lake. For both cases, we show the results of the studies of the daily and yearly loads, of the resources available in the area and the economic evaluation of the chosen plants configuration

    Analysis of Barriers in the Transition toward Sustainable Mobility in the Netherlands

    Get PDF
    The transition toward a sustainable transportation system in the Netherlands takes place in the context of the Dutch “Transition management policy framework”. We study four tech¬nological routes that the “Platform Sustainable Mobility” has selected for this goal: (1) hybridization of vehicles, (2) liquid biofuels, (3) natural gas as a transportation fuel and (4) hydrogen as a transportation fuel. These technological routes all envision large-scale changes in vehicle propulsion technology and fuel infrastructure. Furthermore, they compete for the scarce resources available to invest in new (fuel) infrastructures, which implicates that these ‘transition paths’ are also interdependent at the level of the mobility system. The main outcome of the analysis is the identification of barriers that are currently blocking the transition toward sustainable mobility. Barriers are classified as being related to (1) technology and vehicle development, (2) the availability of (fuel) infrastructures, and (3) elements of the institutional infrastructure. The transition management framework currently misses guidelines for coping with (competing) technologies that each requires large infrastructural investments. We further argue that avoiding undesired lock-ins and creating a beneficial institutional context for sustainable mobility cannot be pursued at the transition path level. Therefore, we recommend that a more systemic approach should be taken to the tran¬si¬tion to sustainable mobility, in which the inter¬dependencies between the transition paths are critically assessed and in which the possibilities to legitimize sustainable mobility as a whole should be used.Innovation, Transition management, Sustainable Mobility, Barriers

    Multi-Objective Hybrid Electric Vehicle Control for Maximizing Fuel Economy and Battery Lifetime

    Get PDF
    High voltage batteries are a fundamental component of hybrid electric vehicles (HEVs). Energy management strategies (EMSs) for HEVs generally aim at maximizing fuel economy solely, yet the method of hybrid powertrain control has a strong impact on the battery lifetime. This paper proposes a multiobjective formulation of dynamic programming, a popular offline optimization tool, which is capable of maximizing both fuel economy and battery lifetime. Obtained numerical results allow correlation of predicted fuel economy with the corresponding predicted battery lifetime. The developed tool can thus help engineers account for battery lifetime during both the HEV powertrain architecture design and the EMS calibration processes

    Onduleur quasi-Z-source pour un système de traction de véhicules électriques à sources multiples : contrôle et gestion

    Get PDF
    Abstract: Power electronics play a fundamental role and help to achieve the new goals of the automobiles in terms of energy economy and environment. The power electronic converters are the key elements which interface their power sources to the drivetrain of the electric vehicle (EV). They contribute to obtaining high efficiency and performance in power systems. However, traditional inverters such as voltage-source, current-source inverters and conventional two-stage inverters present some conceptual limitations. Consequently, many research efforts have been focused on developing new power electronic converters suitable for EVs application. In order to develop and enhance the performance of commercial multiple sources EV, this dissertation aims to select and to control the impedance source inverter and to provide management approaches for multiple sources EV traction system. A concise review of the main existing topologies of impedance source inverters has been presented. That enables to select QZSI (quasi-Z-source inverter) topology as promising architectures with better performance and reliability. The comparative study between the bidirectional conventional two-stage inverter and QZSI for EV applications has been presented. Furthermore, comparative study between different powertrain topologies regarding batteries aging index factors for an off-road EV has been explored. These studies permit to prove that QZSI topology represents a good candidate to be used in multi-source EV system. For improving the performance of QZSI applied to EVs, optimized fractional order PI (FOPI) controllers for QZSI is designed with the ant colony optimization algorithm (ACO-NM) to obtain more suitable aging performance index values for the battery. Moreover, this thesis proposes a hybrid energy storage system (HESS) for EVs to allow an efficient energy use of the battery for a longer distance coverage. Optimized FOPI controller and the finite control set model predictive controller (FCS-MPC) for HESS using bidirectional QZSI is applied for the multi-source EV. The flux-weakening controller has been designed to provide a correct operation with the maximum available torque at any speed within current and voltage limits. Simulation investigations are performed to verify the topologies studied and the efficacity of the proposed controller structure with the bidirectional QZSI. Furthermore, Opal-RT-based real-time simulation has been implemented to validate the effectiveness of the proposed HESS control strategy. The results confirm the EV performance enhancement with the addition of supercapacitors using the proposed control configuration, allowing the efficient use of battery energy with the reduction of root-mean-square value, the mean value, and the standard deviation by 57%, 59%, and 27%, respectively, of battery current compared to the battery-only based inverter.L'électronique de puissance joue un rôle fondamental et contribue à atteindre les nouveaux objectifs de l'automobile en termes d'économie d'énergie et d'environnement. Les convertisseurs d’électroniques de puissance sont considérés comme les éléments clés qui interfacent leurs sources d'alimentation avec la chaîne de traction du véhicule électrique (VE). Ils contribuent à obtenir une efficacité et des performances élevées dans les systèmes électriques. Cependant, les onduleurs traditionnels tels que les onduleurs à source de tension, les onduleurs à source de courant et les onduleurs conventionnels à deux étages qui constituent les onduleurs les plus couramment utilisés, présentent certaines limitations conceptuelles. Par conséquent, de nombreux efforts de recherche se sont concentrés sur le développement de nouveaux convertisseurs d’électroniques de puissance adaptés à l'application aux véhicules électriques. Afin de développer et d'améliorer les performances des VEs à sources multiples commerciales, cette thèse vise à sélectionner, contrôler l'onduleur à source impédante et fournit une approche de gestion pour l'application du système de traction du VE à sources multiples. Une revue concise des principales topologies existantes d'onduleur à source impédante a été présentée. Cela a permis de sélectionner la topologie de l’onduleur quasi-Z-source (QZS) comme architectures prometteuses pouvant être utilisées dans les véhicules électriques, avec de meilleures performances et de fiabilité. L'étude comparative entre l'onduleur bidirectionnel conventionnel à deux étages et de celui à QZS pour les applications du VE a été présentée. En outre, une étude comparative entre différentes topologies de groupes motopropulseurs concernant les facteurs d'indice de vieillissement des batteries pour une application du VE hors route a été explorée. Ces études ont permis de prouver que la topologie de l’onduleur QZS représente une bonne topologie candidate à utiliser dans un système de VE à sources multiples. Pour améliorer les performances de l’onduleur QZS appliquées aux véhicules électriques, des contrôleurs PI d'ordre fractionnaire (PIOF) optimisés pour l’onduleur QZS sont conçus avec l'algorithme de colonies de fourmis afin d'obtenir des valeurs d'indice de performance de vieillissement plus appropriées pour la batterie. De plus, cette thèse propose un système de stockage d'énergie hybride (SSEH) pour le VE afin de permettre une utilisation efficace de l'énergie de la batterie pour une couverture de distance plus longue et une extension de son autonomie. L’optimisation du contrôleur PIOF et du contrôleur par modèle prédictif d'ensemble de contrôle fini (CMP-ECF) pour l’onduleur QZS bidirectionnel a été appliqué au VE à sources multiples avec des approches de gestion appuyées par des règles. Le contrôleur d'affaiblissement de flux magnétique du moteur a été conçu pour fournir un fonctionnement correct avec le couple maximal disponible à n'importe quelle vitesse dans les limites de courant et de tension. Des investigations et des simulations sont effectuées pour vérifier les différentes topologies étudiées et l'efficacité de la structure de contrôleur proposée avec l’onduleur QZS bidirectionnel. De plus, une simulation en temps réel basée sur Opal-RT a été mise en œuvre pour valider l'efficacité de la stratégie de contrôle SSEH proposée. Les résultats confirment l'amélioration des performances du VE avec l'ajout d'un supercondensateur utilisant la configuration du contrôle proposée, permettant une utilisation efficace de l'énergie de la batterie avec une réduction de la valeur moyenne quadratique, de la valeur moyenne et de l'écart type de 57%, 59% et 27%, respectivement, du courant de la batterie par rapport à l'onduleur connecté directement à la batterie
    corecore