64 research outputs found

    A speaker rediarization scheme for improving diarization in large two-speaker telephone datasets

    Get PDF
    In this paper we propose a novel scheme for carrying out speaker diarization in an iterative manner. We aim to show that the information obtained through the first pass of speaker diarization can be reused to refine and improve the original diarization results. We call this technique speaker rediarization and demonstrate the practical application of our rediarization algorithm using a large archive of two-speaker telephone conversation recordings. We use the NIST 2008 SRE summed telephone corpora for evaluating our speaker rediarization system. This corpus contains recurring speaker identities across independent recording sessions that need to be linked across the entire corpus. We show that our speaker rediarization scheme can take advantage of inter-session speaker information, linked in the initial diarization pass, to achieve a 30% relative improvement over the original diarization error rate (DER) after only two iterations of rediarization

    MAGiC: A multimodal framework for analysing gaze in dyadic communication

    Get PDF
    The analysis of dynamic scenes has been a challenging domain in eye tracking research. This study presents a framework, named MAGiC, for analyzing gaze contact and gaze aversion in face-to-face communication. MAGiC provides an environment that is able to detect and track the conversation partner’s face automatically, overlay gaze data on top of the face video, and incorporate speech by means of speech-act annotation. Specifically, MAGiC integrates eye tracking data for gaze, audio data for speech segmentation, and video data for face tracking. MAGiC is an open source framework and its usage is demonstrated via publicly available video content and wiki pages. We explored the capabilities of MAGiC through a pilot study and showed that it facilitates the analysis of dynamic gaze data by reducing the annotation effort and the time spent for manual analysis of video data

    Spoken content retrieval: A survey of techniques and technologies

    Get PDF
    Speech media, that is, digital audio and video containing spoken content, has blossomed in recent years. Large collections are accruing on the Internet as well as in private and enterprise settings. This growth has motivated extensive research on techniques and technologies that facilitate reliable indexing and retrieval. Spoken content retrieval (SCR) requires the combination of audio and speech processing technologies with methods from information retrieval (IR). SCR research initially investigated planned speech structured in document-like units, but has subsequently shifted focus to more informal spoken content produced spontaneously, outside of the studio and in conversational settings. This survey provides an overview of the field of SCR encompassing component technologies, the relationship of SCR to text IR and automatic speech recognition and user interaction issues. It is aimed at researchers with backgrounds in speech technology or IR who are seeking deeper insight on how these fields are integrated to support research and development, thus addressing the core challenges of SCR

    Overlapped speech detection and speaker counting using distant microphone arrays

    Get PDF
    International audienceWe study the problem of detecting and counting simultaneous, overlapping speakers in a multichannel, distant-microphone scenario. Focusing on a supervised learning approach, we treat Voice Activity Detection (VAD), Overlapped Speech Detection (OSD), joint VAD and OSD (VAD+OSD) and speaker counting in a unified way, as instances of a general Overlapped Speech Detection and Counting (OSDC) multi-class supervised learning problem. We consider a Temporal Convolutional Network (TCN) and a Transformer based architecture for this task, and compare them with previously proposed state-of-the art methods based on Recurrent Neural Networks (RNN) or hybrid Convolutional-Recurrent Neural Networks (CRNN). In addition, we propose ways of exploiting multichannel input by means of early or late fusion of single-channel features with spatial features extracted from one or more microphone pairs. We conduct an extensive experimental evaluation on the AMI and CHiME-6 datasets and on a purposely made multichannel synthetic dataset. We show that the Transformer-based architecture performs best among all architectures and that neural network based spatial localization features outperform signal-based spatial features and significantly improve performance compared to single-channel features only. Finally, we find that training with a speaker counting objective improves OSD compared to training with a VAD+OSD objective

    Audio Visual Speaker Localization from EgoCentric Views

    Full text link
    The use of audio and visual modality for speaker localization has been well studied in the literature by exploiting their complementary characteristics. However, most previous works employ the setting of static sensors mounted at fixed positions. Unlike them, in this work, we explore the ego-centric setting, where the heterogeneous sensors are embodied and could be moving with a human to facilitate speaker localization. Compared to the static scenario, the ego-centric setting is more realistic for smart-home applications e.g., a service robot. However, this also brings new challenges such as blurred images, frequent speaker disappearance from the field of view of the wearer, and occlusions. In this paper, we study egocentric audio-visual speaker DOA estimation and deal with the challenges mentioned above. Specifically, we propose a transformer-based audio-visual fusion method to estimate the relative DOA of the speaker to the wearer, and design a training strategy to mitigate the problem of the speaker disappearing from the camera's view. We also develop a new dataset for simulating the out-of-view scenarios, by creating a scene with a camera wearer walking around while a speaker is moving at the same time. The experimental results show that our proposed method offers promising performance in this new dataset in terms of tracking accuracy. Finally, we adapt the proposed method for the multi-speaker scenario. Experiments on EasyCom show the effectiveness of the proposed model for multiple speakers in real scenarios, which achieves state-of-the-art results in the sphere active speaker detection task and the wearer activity prediction task. The simulated dataset and related code are available at https://github.com/KawhiZhao/Egocentric-Audio-Visual-Speaker-Localization

    Using Deep Neural Networks for Speaker Diarisation

    Get PDF
    Speaker diarisation answers the question “who spoke when?” in an audio recording. The input may vary, but a system is required to output speaker labelled segments in time. Typical stages are Speech Activity Detection (SAD), speaker segmentation and speaker clustering. Early research focussed on Conversational Telephone Speech (CTS) and Broadcast News (BN) domains before the direction shifted to meetings and, more recently, broadcast media. The British Broadcasting Corporation (BBC) supplied data through the Multi-Genre Broadcast (MGB) Challenge in 2015 which showed the difficulties speaker diarisation systems have on broadcast media data. Diarisation is typically an unsupervised task which does not use auxiliary data or information to enhance a system. However, methods which do involve supplementary data have shown promise. Five semi-supervised methods are investigated which use a combination of inputs: different channel types and transcripts. The methods involve Deep Neural Networks (DNNs) for SAD, DNNs trained for channel detection, transcript alignment, and combinations of these approaches. However, the methods are only applicable when datasets contain the required inputs. Therefore, a method involving a pretrained Speaker Separation Deep Neural Network (ssDNN) is investigated which is applicable to every dataset. This technique performs speaker clustering and speaker segmentation using DNNs successfully for meeting data and with mixed results for broadcast media. The task of diarisation focuses on two aspects: accurate segments and speaker labels. The Diarisation Error Rate (DER) does not evaluate the segmentation quality as it does not measure the number of correctly detected segments. Other metrics exist, such as boundary and purity measures, but these also mask the segmentation quality. An alternative metric is presented based on the F-measure which considers the number of hypothesis segments correctly matched to reference segments. A deeper insight into the segment quality is shown through this metric

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes
    corecore