107 research outputs found

    Using a conic bundle method to accelerate both phases of a quadratic convex reformulation

    Full text link
    We present algorithm MIQCR-CB that is an advancement of method MIQCR~(Billionnet, Elloumi and Lambert, 2012). MIQCR is a method for solving mixed-integer quadratic programs and works in two phases: the first phase determines an equivalent quadratic formulation with a convex objective function by solving a semidefinite problem (SDP)(SDP), and, in the second phase, the equivalent formulation is solved by a standard solver. As the reformulation relies on the solution of a large-scale semidefinite program, it is not tractable by existing semidefinite solvers, already for medium sized problems. To surmount this difficulty, we present in MIQCR-CB a subgradient algorithm within a Lagrangian duality framework for solving (SDP)(SDP) that substantially speeds up the first phase. Moreover, this algorithm leads to a reformulated problem of smaller size than the one obtained by the original MIQCR method which results in a shorter time for solving the second phase. We present extensive computational results to show the efficiency of our algorithm

    A compact variant of the QCR method for quadratically constrained quadratic 0-1 programs

    Get PDF
    Quadratic Convex Reformulation (QCR) is a technique that was originally proposed for quadratic 0-1 programs, and then extended to various other problems. It is used to convert non-convex instances into convex ones, in such a way that the bound obtained by solving the continuous relaxation of the reformulated instance is as strong as possible. In this paper, we focus on the case of quadratically constrained quadratic 0-1 programs. The variant of QCR previously proposed for this case involves the addition of a quadratic number of auxiliary continuous variables. We show that, in fact, at most one additional variable is needed. Some computational results are also presented

    Semidefinite approximation for mixed binary quadratically constrained quadratic programs

    Full text link
    Motivated by applications in wireless communications, this paper develops semidefinite programming (SDP) relaxation techniques for some mixed binary quadratically constrained quadratic programs (MBQCQP) and analyzes their approximation performance. We consider both a minimization and a maximization model of this problem. For the minimization model, the objective is to find a minimum norm vector in NN-dimensional real or complex Euclidean space, such that MM concave quadratic constraints and a cardinality constraint are satisfied with both binary and continuous variables. {\color{blue}By employing a special randomized rounding procedure, we show that the ratio between the norm of the optimal solution of the minimization model and its SDP relaxation is upper bounded by \cO(Q^2(M-Q+1)+M^2) in the real case and by \cO(M(M-Q+1)) in the complex case.} For the maximization model, the goal is to find a maximum norm vector subject to a set of quadratic constraints and a cardinality constraint with both binary and continuous variables. We show that in this case the approximation ratio is bounded from below by \cO(\epsilon/\ln(M)) for both the real and the complex cases. Moreover, this ratio is tight up to a constant factor

    Solving unconstrained 0-1 polynomial programs through quadratic convex reformulation

    Get PDF
    We propose a solution approach for the problem (P) of minimizing an unconstrained binary polynomial optimization problem. We call this method PQCR (Polynomial Quadratic Convex Reformulation). The resolution is based on a 3-phase method. The first phase consists in reformulating (P) into a quadratic program (QP). For this, we recursively reduce the degree of (P) to two, by use of the standard substitution of the product of two variables by a new one. We then obtain a linearly constrained binary program. In the second phase, we rewrite the quadratic objective function into an equivalent and parametrized quadratic function using the equality x 2 i = x i and new valid quadratic equalities. Then, we focus on finding the best parameters to get a quadratic convex program which continuous relaxation's optimal value is maximized. For this, we build a semidefinite relaxation (SDP) of (QP). Then, we prove that the standard linearization inequalities, used for the quadratization step, are redundant in (SDP) in presence of the new quadratic equalities. Next, we deduce our optimal parameters from the dual optimal solution of (SDP). The third phase consists in solving (QP *), the optimal reformulated problem, with a standard solver. In particular, at each node of the branch-and-bound, the solver computes the optimal value of a continuous quadratic convex program. We present computational results on instances of the image restoration problem and of the low autocorrelation binary sequence problem. We compare PQCR with other convexification methods, and with the general solver Baron 17.4.1 [39]. We observe that most of the considered instances can be solved with our approach combined with the use of Cplex [24]

    Regret Models and Preprocessing Techniques for Combinatorial Optimization under Uncertainty

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Global solution of non-convex quadratically constrained quadratic programs

    Get PDF
    International audienceThe class of mixed-integer quadratically constrained quadratic programs (QCQP) consists of minimizing a quadratic function under quadratic constraints where the variables could be integer or continuous. On a previous paper we introduced a method called MIQCR for solving QC-QPs with the following restriction : all quadratic sub-functions of purely continuous variables are already convex. In this paper, we propose an extension of MIQCR which applies to any QCQP. Let (P) be a QCQP. Our approach to solve (P) is first to build an equivalent mixed-integer quadratic problem (P *). This equivalent problem (P *) has a quadratic convex objective function, linear constraints, and additional variables y that are meant to satisfy the additional quadratic constraints y = xx T , where x are the initial variables of problem (P). We then propose to solve (P *) by a branch-and-bound algorithm based on the relaxation of the additional quadratic constraints and of the integrality constraints. This type of branching is known as spatial branch-and-bound. Computational experiences are carried out on a total of 325 instances. The results show that the solution time of most of the considered instances is improved by our method in comparison with the recent implementation of QuadProgBB, and with the solvers Cplex, Couenne, Scip, BARON and GloMIQO
    corecore