37 research outputs found

    Incorporating Memory and Learning Mechanisms Into Meta-RaPS

    Get PDF
    Due to the rapid increase of dimensions and complexity of real life problems, it has become more difficult to find optimal solutions using only exact mathematical methods. The need to find near-optimal solutions in an acceptable amount of time is a challenge when developing more sophisticated approaches. A proper answer to this challenge can be through the implementation of metaheuristic approaches. However, a more powerful answer might be reached by incorporating intelligence into metaheuristics. Meta-RaPS (Metaheuristic for Randomized Priority Search) is a metaheuristic that creates high quality solutions for discrete optimization problems. It is proposed that incorporating memory and learning mechanisms into Meta-RaPS, which is currently classified as a memoryless metaheuristic, can help the algorithm produce higher quality results. The proposed Meta-RaPS versions were created by taking different perspectives of learning. The first approach taken is Estimation of Distribution Algorithms (EDA), a stochastic learning technique that creates a probability distribution for each decision variable to generate new solutions. The second Meta-RaPS version was developed by utilizing a machine learning algorithm, Q Learning, which has been successfully applied to optimization problems whose output is a sequence of actions. In the third Meta-RaPS version, Path Relinking (PR) was implemented as a post-optimization method in which the new algorithm learns the good attributes by memorizing best solutions, and follows them to reach better solutions. The fourth proposed version of Meta-RaPS presented another form of learning with its ability to adaptively tune parameters. The efficiency of these approaches motivated us to redesign Meta-RaPS by removing the improvement phase and adding a more sophisticated Path Relinking method. The new Meta-RaPS could solve even the largest problems in much less time while keeping up the quality of its solutions. To evaluate their performance, all introduced versions were tested using the 0-1 Multidimensional Knapsack Problem (MKP). After comparing the proposed algorithms, Meta-RaPS PR and Meta-RaPS Q Learning appeared to be the algorithms with the best and worst performance, respectively. On the other hand, they could all show superior performance than other approaches to the 0-1 MKP in the literature

    Adaptive algorithms for history matching and uncertainty quantification

    Get PDF
    Numerical reservoir simulation models are the basis for many decisions in regard to predicting, optimising, and improving production performance of oil and gas reservoirs. History matching is required to calibrate models to the dynamic behaviour of the reservoir, due to the existence of uncertainty in model parameters. Finally a set of history matched models are used for reservoir performance prediction and economic and risk assessment of different development scenarios. Various algorithms are employed to search and sample parameter space in history matching and uncertainty quantification problems. The algorithm choice and implementation, as done through a number of control parameters, have a significant impact on effectiveness and efficiency of the algorithm and thus, the quality of results and the speed of the process. This thesis is concerned with investigation, development, and implementation of improved and adaptive algorithms for reservoir history matching and uncertainty quantification problems. A set of evolutionary algorithms are considered and applied to history matching. The shared characteristic of applied algorithms is adaptation by balancing exploration and exploitation of the search space, which can lead to improved convergence and diversity. This includes the use of estimation of distribution algorithms, which implicitly adapt their search mechanism to the characteristics of the problem. Hybridising them with genetic algorithms, multiobjective sorting algorithms, and real-coded, multi-model and multivariate Gaussian-based models can help these algorithms to adapt even more and improve their performance. Finally diversity measures are used to develop an explicit, adaptive algorithm and control the algorithm’s performance, based on the structure of the problem. Uncertainty quantification in a Bayesian framework can be carried out by resampling of the search space using Markov chain Monte-Carlo sampling algorithms. Common critiques of these are low efficiency and their need for control parameter tuning. A Metropolis-Hastings sampling algorithm with an adaptive multivariate Gaussian proposal distribution and a K-nearest neighbour approximation has been developed and applied

    The development and application of metaheuristics for problems in graph theory: A computational study

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.It is known that graph theoretic models have extensive application to real-life discrete optimization problems. Many of these models are NP-hard and, as a result, exact methods may be impractical for large scale problem instances. Consequently, there is a great interest in developing e±cient approximate methods that yield near-optimal solutions in acceptable computational times. A class of such methods, known as metaheuristics, have been proposed with success. This thesis considers some recently proposed NP-hard combinatorial optimization problems formulated on graphs. In particular, the min- imum labelling spanning tree problem, the minimum labelling Steiner tree problem, and the minimum quartet tree cost problem, are inves- tigated. Several metaheuristics are proposed for each problem, from classical approximation algorithms to novel approaches. A compre- hensive computational investigation in which the proposed methods are compared with other algorithms recommended in the literature is reported. The results show that the proposed metaheuristics outper- form the algorithms recommended in the literature, obtaining optimal or near-optimal solutions in short computational running times. In addition, a thorough analysis of the implementation of these methods provide insights for the implementation of metaheuristic strategies for other graph theoretic problems

    Innovative hybrid MOEA/AD variants for solving multi-objective combinatorial optimization problems

    Get PDF
    Orientador : Aurora Trinidad Ramirez PozoCoorientador : Roberto SantanaTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 16/12/2016Inclui referências : f. 103-116Resumo: Muitos problemas do mundo real podem ser representados como um problema de otimização combinatória. Muitas vezes, estes problemas são caracterizados pelo grande número de variáveis e pela presença de múltiplos objetivos a serem otimizados ao mesmo tempo. Muitas vezes estes problemas são difíceis de serem resolvidos de forma ótima. Suas resoluções tem sido considerada um desafio nas últimas décadas. Os algoritimos metaheurísticos visam encontrar uma aproximação aceitável do ótimo em um tempo computacional razoável. Os algoritmos metaheurísticos continuam sendo um foco de pesquisa científica, recebendo uma atenção crescente pela comunidade. Uma das têndencias neste cenário é a arbordagem híbrida, na qual diferentes métodos e conceitos são combinados objetivando propor metaheurísticas mais eficientes. Nesta tese, nós propomos algoritmos metaheurísticos híbridos para a solução de problemas combinatoriais multiobjetivo. Os principais ingredientes das nossas propostas são: (i) o algoritmo evolutivo multiobjetivo baseado em decomposição (MOEA/D framework), (ii) a otimização por colônias de formigas e (iii) e os algoritmos de estimação de distribuição. Em nossos frameworks, além dos operadores genéticos tradicionais, podemos instanciar diferentes modelos como mecanismo de reprodução dos algoritmos. Além disso, nós introduzimos alguns componentes nos frameworks objetivando balancear a convergência e a diversidade durante a busca. Nossos esforços foram direcionados para a resolução de problemas considerados difíceis na literatura. São eles: a programação quadrática binária sem restrições multiobjetivo, o problema de programação flow-shop permutacional multiobjetivo, e também os problemas caracterizados como deceptivos. Por meio de estudos experimentais, mostramos que as abordagens propostas são capazes de superar os resultados do estado-da-arte em grande parte dos casos considerados. Mostramos que as diretrizes do MOEA/D hibridizadas com outras metaheurísticas é uma estratégia promissora para a solução de problemas combinatoriais multiobjetivo. Palavras-chave: metaheuristicas, otimização multiobjetivo, problemas combinatoriais, MOEA/D, otimização por colônia de formigas, algoritmos de estimação de distribuição, programação quadrática binária sem restrições multiobjetivo, problema de programação flow-shop permutacional multiobjetivo, abordagens híbridas.Abstract: Several real-world problems can be stated as a combinatorial optimization problem. Very often, they are characterized by the large number of variables and the presence of multiple conflicting objectives to be optimized at the same time. These kind of problems are, usually, hard to be solved optimally, and their solutions have been considered a challenge for a long time. Metaheuristic algorithms aim at finding an acceptable approximation to the optimal solution in a reasonable computational time. The research on metaheuristics remains an attractive area and receives growing attention. One of the trends in this scenario are the hybrid approaches, in which different methods and concepts are combined aiming to propose more efficient approaches. In this thesis, we have proposed hybrid metaheuristic algorithms for solving multi-objective combinatorial optimization problems. Our proposals are based on (i) the multi-objective evolutionary algorithm based on decomposition (MOEA/D framework), (ii) the bio-inspired metaheuristic ant colony optimization, and (iii) the probabilistic models from the estimation of distribution algorithms. Our algorithms are considered MOEA/D variants. In our MOEA/D variants, besides the traditional genetic operators, we can instantiate different models as the variation step (reproduction). Moreover, we include some design modifications into the frameworks to control the convergence and the diversity during their search (evolution). We have addressed some important problems from the literature, e.g., the multi-objective unconstrained binary quadratic programming, the multiobjective permutation flowshop scheduling problem, and the problems characterized by deception. As a result, we show that our proposed frameworks are able to solve these problems efficiently by outperforming the state-of-the-art approaches in most of the cases considered. We show that the MOEA/D guidelines hybridized to other metaheuristic components and concepts is a powerful strategy for solving multi-objective combinatorial optimization problems. Keywords: meta-heuristics, multi-objective optimization, combinatorial problems, MOEA/D, ant colony optimization, estimation of distribution algorithms, unconstrained binary quadratic programming, permutation flowshop scheduling problem, hybrid approaches

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Preventing premature convergence and proving the optimality in evolutionary algorithms

    Get PDF
    http://ea2013.inria.fr//proceedings.pdfInternational audienceEvolutionary Algorithms (EA) usually carry out an efficient exploration of the search-space, but get often trapped in local minima and do not prove the optimality of the solution. Interval-based techniques, on the other hand, yield a numerical proof of optimality of the solution. However, they may fail to converge within a reasonable time due to their inability to quickly compute a good approximation of the global minimum and their exponential complexity. The contribution of this paper is a hybrid algorithm called Charibde in which a particular EA, Differential Evolution, cooperates with a Branch and Bound algorithm endowed with interval propagation techniques. It prevents premature convergence toward local optima and outperforms both deterministic and stochastic existing approaches. We demonstrate its efficiency on a benchmark of highly multimodal problems, for which we provide previously unknown global minima and certification of optimality

    Treasure hunt : a framework for cooperative, distributed parallel optimization

    Get PDF
    Orientador: Prof. Dr. Daniel WeingaertnerCoorientadora: Profa. Dra. Myriam Regattieri DelgadoTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 27/05/2019Inclui referências: p. 18-20Área de concentração: Ciência da ComputaçãoResumo: Este trabalho propõe um framework multinível chamado Treasure Hunt, que é capaz de distribuir algoritmos de busca independentes para um grande número de nós de processamento. Com o objetivo de obter uma convergência conjunta entre os nós, este framework propõe um mecanismo de direcionamento que controla suavemente a cooperação entre múltiplas instâncias independentes do Treasure Hunt. A topologia em árvore proposta pelo Treasure Hunt garante a rápida propagação da informação pelos nós, ao mesmo tempo em que provê simutaneamente explorações (pelos nós-pai) e intensificações (pelos nós-filho), em vários níveis de granularidade, independentemente do número de nós na árvore. O Treasure Hunt tem boa tolerância à falhas e está parcialmente preparado para uma total tolerância à falhas. Como parte dos métodos desenvolvidos durante este trabalho, um método automatizado de Particionamento Iterativo foi proposto para controlar o balanceamento entre explorações e intensificações ao longo da busca. Uma Modelagem de Estabilização de Convergência para operar em modo Online também foi proposto, com o objetivo de encontrar pontos de parada com bom custo/benefício para os algoritmos de otimização que executam dentro das instâncias do Treasure Hunt. Experimentos em benchmarks clássicos, aleatórios e de competição, de vários tamanhos e complexidades, usando os algoritmos de busca PSO, DE e CCPSO2, mostram que o Treasure Hunt melhora as características inerentes destes algoritmos de busca. O Treasure Hunt faz com que os algoritmos de baixa performance se tornem comparáveis aos de boa performance, e os algoritmos de boa performance possam estender seus limites até problemas maiores. Experimentos distribuindo instâncias do Treasure Hunt, em uma rede cooperativa de até 160 processos, demonstram a escalabilidade robusta do framework, apresentando melhoras nos resultados mesmo quando o tempo de processamento é fixado (wall-clock) para todas as instâncias distribuídas do Treasure Hunt. Resultados demonstram que o mecanismo de amostragem fornecido pelo Treasure Hunt, aliado à maior cooperação entre as múltiplas populações em evolução, reduzem a necessidade de grandes populações e de algoritmos de busca complexos. Isto é especialmente importante em problemas de mundo real que possuem funções de fitness muito custosas. Palavras-chave: Inteligência artificial. Métodos de otimização. Algoritmos distribuídos. Modelagem de convergência. Alta dimensionalidade.Abstract: This work proposes a multilevel framework called Treasure Hunt, which is capable of distributing independent search algorithms to a large number of processing nodes. Aiming to obtain joint convergences between working nodes, Treasure Hunt proposes a driving mechanism that smoothly controls the cooperation between the multiple independent Treasure Hunt instances. The tree topology proposed by Treasure Hunt ensures quick propagation of information, while providing simultaneous explorations (by parents) and exploitations (by children), on several levels of granularity, regardless the number of nodes in the tree. Treasure Hunt has good fault tolerance and is partially prepared to full fault tolerance. As part of the methods developed during this work, an automated Iterative Partitioning method is proposed to control the balance between exploration and exploitation as the search progress. A Convergence Stabilization Modeling to operate in Online mode is also proposed, aiming to find good cost/benefit stopping points for the optimization algorithms running within the Treasure Hunt instances. Experiments on classic, random and competition benchmarks of various sizes and complexities, using the search algorithms PSO, DE and CCPSO2, show that Treasure Hunt boosts the inherent characteristics of these search algorithms. Treasure Hunt makes algorithms with poor performances to become comparable to good ones, and algorithms with good performances to be capable of extending their limits to larger problems. Experiments distributing Treasure Hunt instances in a cooperative network up to 160 processes show the robust scaling of the framework, presenting improved results even when fixing a wall-clock time for the instances. Results show that the sampling mechanism provided by Treasure Hunt, allied to the increased cooperation between multiple evolving populations, reduce the need for large population sizes and complex search algorithms. This is specially important on real-world problems with time-consuming fitness functions. Keywords: Artificial intelligence. Optimization methods. Distributed algorithms. Convergence modeling. High dimensionality

    Evolving machine learning and deep learning models using evolutionary algorithms

    Get PDF
    Despite the great success in data mining, machine learning and deep learning models are yet subject to material obstacles when tackling real-life challenges, such as feature selection, initialization sensitivity, as well as hyperparameter optimization. The prevalence of these obstacles has severely constrained conventional machine learning and deep learning methods from fulfilling their potentials. In this research, three evolving machine learning and one evolving deep learning models are proposed to eliminate above bottlenecks, i.e. improving model initialization, enhancing feature representation, as well as optimizing model configuration, respectively, through hybridization between the advanced evolutionary algorithms and the conventional ML and DL methods. Specifically, two Firefly Algorithm based evolutionary clustering models are proposed to optimize cluster centroids in K-means and overcome initialization sensitivity as well as local stagnation. Secondly, a Particle Swarm Optimization based evolving feature selection model is developed for automatic identification of the most effective feature subset and reduction of feature dimensionality for tackling classification problems. Lastly, a Grey Wolf Optimizer based evolving Convolutional Neural Network-Long Short-Term Memory method is devised for automatic generation of the optimal topological and learning configurations for Convolutional Neural Network-Long Short-Term Memory networks to undertake multivariate time series prediction problems. Moreover, a variety of tailored search strategies are proposed to eliminate the intrinsic limitations embedded in the search mechanisms of the three employed evolutionary algorithms, i.e. the dictation of the global best signal in Particle Swarm Optimization, the constraint of the diagonal movement in Firefly Algorithm, as well as the acute contraction of search territory in Grey Wolf Optimizer, respectively. The remedy strategies include the diversification of guiding signals, the adaptive nonlinear search parameters, the hybrid position updating mechanisms, as well as the enhancement of population leaders. As such, the enhanced Particle Swarm Optimization, Firefly Algorithm, and Grey Wolf Optimizer variants are more likely to attain global optimality on complex search landscapes embedded in data mining problems, owing to the elevated search diversity as well as the achievement of advanced trade-offs between exploration and exploitation

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratègics com el transport i la producció representen problemes NP-difícils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurístiques són mètodes populars per a resoldre problemes d'optimització difícils en temps de càlcul raonables. No obstant això, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions són deterministes i conegudes. Aquests constitueixen supòsits forts que obliguen a treballar amb problemes simplificats. Com a conseqüència, les solucions poden conduir a resultats pobres. Les simheurístiques integren la simulació a les metaheurístiques per resoldre problemes estocàstics d'una manera natural. Anàlogament, les learnheurístiques combinen l'estadística amb les metaheurístiques per fer front a problemes en entorns dinàmics, en què els inputs poden dependre de l'estructura de la solució. En aquest context, les principals contribucions d'aquesta tesi són: el disseny de les learnheurístiques, una classificació dels treballs que combinen l'estadística / l'aprenentatge automàtic i les metaheurístiques, i diverses aplicacions en transport, producció, finances i computació.Un gran número de procesos de toma de decisiones en sectores estratégicos como el transporte y la producción representan problemas NP-difíciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurísticas son métodos populares para resolver problemas difíciles de optimización de manera rápida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurísticas integran simulación en metaheurísticas para resolver problemas estocásticos de una manera natural. De manera similar, las learnheurísticas combinan aprendizaje estadístico y metaheurísticas para abordar problemas en entornos dinámicos, donde los inputs pueden depender de la estructura de la solución. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurísticas, una clasificación de trabajos que combinan estadística / aprendizaje automático y metaheurísticas, y varias aplicaciones en transporte, producción, finanzas y computación.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    k-Means

    Get PDF
    corecore