13 research outputs found

    Intermediate QoS Prototype for the EDGI Infrastructure

    Get PDF
    This document provides the first deliverable of EDGI JRA2. It is produced by the INRIA team, the SZTAKI team, the LAL/IN2P3 team and the University of Coimbra team. This document aims at describing achievements and results of JRA2 tasks "Advanced QoS Scheduler and Oracle" and "Support In Science Gateway". Hybrid Distributed Computing Infrastructures (DCIs) allow users to combine Grids, Desktop Grids, Clouds, etc. to obtain for their users large computing capabilities. The EDGI infrastructure belongs to this kind of DCIs. The document presents the SpeQuloS framework to provide quality of service (QoS) for application executed on the EDGI infrastructure. It also introduces EDGI QoS portal, an user-friendly and integrated access to QoS features for users of EDGI infrastructure. In this document, we first introduce new results from JRA2.1 task, which collected and analyzed batch execution on Desktop Grid. Then, we present the advanced Cloud Scheduling and Oracle strategies designed inside the SpeQuloS framework (task JRA2.2). We demonstrate efficiency of these strategies using performance evaluation carried out with simulations. Next, we introduce Credit System architecture and QoS user portal as part of the JRA2 Support In Science Gateway (task JRA2.3). Finally, we conclude and provide references to JRA2 production.Ce document fournit le premier livrable pour la tâche JRA2 du projet européen European Desktop Grid Initiative (FP7 EDGI). Il est produit par les équipes de l'INRIA, de SZTAKI, du LAL/IN2P3 et de l'Université de Coimbra. Ce document vise à décrire les réalisations et les résultats qui concernent la qualité de service pour l'infrastructure de grilles de PCs européenne EDGI

    Hybrid Distributed Computing Infrastructure Experiments in Grid5000 : Supporting QoS in Desktop Grids with Cloud Resources

    Get PDF
    International audienceHybrid Distributed Computing Infrastructures (DCIs) allow users to combine Grids, Desktop Grids, Clouds, etc. to obtain for their users even larger computing capabilities. In this paper, we present an experimental study of the SpeQuloS framework which aims at providing QoS to Desktop Grid by provisioning on-demand Cloud resources. We describe the experimental platform which relies on Grid5000 to mimic both a Desktop Grid system and a Cloud system. Preliminary results are presented which shows the potential of the SpeQuloS approach

    Contributions to Desktop Grid Computing : From High Throughput Computing to Data-Intensive Sciences on Hybrid Distributed Computing Infrastructures

    Get PDF
    Since the mid 90’s, Desktop Grid Computing - i.e the idea of using a large number of remote PCs distributed on the Internet to execute large parallel applications - has proved to be an efficient paradigm to provide a large computational power at the fraction of the cost of a dedicated computing infrastructure.This document presents my contributions over the last decade to broaden the scope of Desktop Grid Computing. My research has followed three different directions. The first direction has established new methods to observe and characterize Desktop Grid resources and developed experimental platforms to test and validate our approach in conditions close to reality. The second line of research has focused on integrating Desk- top Grids in e-science Grid infrastructure (e.g. EGI), which requires to address many challenges such as security, scheduling, quality of service, and more. The third direction has investigated how to support large-scale data management and data intensive applica- tions on such infrastructures, including support for the new and emerging data-oriented programming models.This manuscript not only reports on the scientific achievements and the technologies developed to support our objectives, but also on the international collaborations and projects I have been involved in, as well as the scientific mentoring which motivates my candidature for the Habilitation `a Diriger les Recherches

    Scalable audio processing across heterogeneous distributed resources: An investigation into distributed audio processing for Music Information Retrieval

    Get PDF
    Audio analysis algorithms and frameworks for Music Information Retrieval (MIR) are expanding rapidly, providing new ways to discover non-trivial information from audio sources, beyond that which can be ascertained from unreliable metadata such as ID3 tags. MIR is a broad field and many aspects of the algorithms and analysis components that are used are more accurate given a larger dataset for analysis, and often require extensive computational resources. This thesis investigates if, through the use of modern distributed computing techniques, it is possible to design an MIR system that is scalable as the number of participants increases, which adheres to copyright laws and restrictions, whilst at the same time enabling access to a global database of music for MIR applications and research. A scalable platform for MIR analysis would be of benefit to the MIR and scientific community as a whole. A distributed MIR platform that encompasses the creation of MIR algorithms and workflows, their distribution, results collection and analysis, is presented in this thesis. The framework, called DART - Distributed Audio Retrieval using Triana - is designed to facilitate the submission of MIR algorithms and computational tasks against either remotely held music and audio content, or audio provided and distributed by the MIR researcher. Initially a detailed distributed DART architecture is presented, along with simulations to evaluate the validity and scalability of the architecture. The idea of a parameter sweep experiment to find the optimal parameters of the Sub-Harmonic Summation (SHS) algorithm is presented, in order to test the platform and use it to perform useful and real-world experiments that contribute new knowledge to the field. DART is tested on various pre-existing distributed computing platforms and the feasibility of creating a scalable infrastructure for workflow distribution is investigated throughout the thesis, along with the different workflow distribution platforms that could be integrated into the system. The DART parameter sweep experiments begin on a small scale, working up towards the goal of running experiments on thousands of nodes, in order to truly evaluate the scalability of the DART system. The result of this research is a functional and scalable distributed MIR research platform that is capable of performing real world MIR analysis, as demonstrated by the successful completion of several large scale SHS parameter sweep experiments across a variety of different input data - using various distribution methods - and through finding the optimal parameters of the implemented SHS algorithm. DART is shown to be highly adaptable both in terms of the distributed MIR analysis algorithm, as well as the distributio

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Active Data: A Data-Centric Approach to Data Life-Cycle Management

    Get PDF
    International audienceData-intensive science offers new opportunities for innovation and discoveries, provided that large datasets can be handled efficiently. Data management for data-intensive science applications is challenging; requiring support for complex data life cycles, coordination across multiple sites, fault tolerance, and scalability to support tens of sites and petabytes of data. In this paper, we argue that data management for data-intensive science applications requires a fundamentally different management approach than the current ad-hoc task centric approach. We propose Active Data, a fundamentally novel paradigm for data life cycle management. Active Data follows two principles: data-centric and event-driven. We report on the Active Data programming model and its preliminary implementation, and discuss the benefits and limitations of the approach on recognized challenging data-intensive science use-cases.Les importants volumes de données produits par la science présentent de nouvelles opportunités d'innovation et de découvertes. Cependant ceci sera conditionné par notre capacité à gérer efficacement de très grands jeux de données. La gestion de données pour les applications scientifiques data-intensive présente un véritable défi~; elle requière le support de cycles de vie très complexes, la coordination de plusieurs sites, de la tolérance aux pannes et de passer à l'échelle sur des dizaines de sites avec plusieurs péta-octets de données. Dans cet article nous argumentons que la gestion des données pour les applications scientifiques data-intensive nécessite une approche fondamentalement différente de l'actuel paradigme centré sur les tâches. Nous proposons Active Data, un nouveau paradigme pour la gestion du cycle de vie des données. Active Data suit deux principes~: il est centré sur les données et à base d'événements. Nous présentons le modèle de programmation Active Data, un prototype d'implémentation et discutons des avantages et limites de notre approche à partir d'étude de cas d'applications scientifiques

    3rd EGEE User Forum

    Get PDF
    We have organized this book in a sequence of chapters, each chapter associated with an application or technical theme introduced by an overview of the contents, and a summary of the main conclusions coming from the Forum for the chapter topic. The first chapter gathers all the plenary session keynote addresses, and following this there is a sequence of chapters covering the application flavoured sessions. These are followed by chapters with the flavour of Computer Science and Grid Technology. The final chapter covers the important number of practical demonstrations and posters exhibited at the Forum. Much of the work presented has a direct link to specific areas of Science, and so we have created a Science Index, presented below. In addition, at the end of this book, we provide a complete list of the institutes and countries involved in the User Forum
    corecore