5,149 research outputs found

    Extending sensor networks into the cloud using Amazon web services

    Get PDF
    Sensor networks provide a method of collecting environmental data for use in a variety of distributed applications. However, to date, limited support has been provided for the development of integrated environmental monitoring and modeling applications. Specifically, environmental dynamism makes it difficult to provide computational resources that are sufficient to deal with changing environmental conditions. This paper argues that the Cloud Computing model is a good fit with the dynamic computational requirements of environmental monitoring and modeling. We demonstrate that Amazon EC2 can meet the dynamic computational needs of environmental applications. We also demonstrate that EC2 can be integrated with existing sensor network technologies to offer an end-to-end environmental monitoring and modeling solution

    Experiences and issues for environmental engineering sensor network deployments

    Get PDF
    Sensor network research is a large and growing area of academic effort, examining technological and deployment issues in the area of environmental monitoring. These technologies are used by environmental engineers and scientists to monitor a multiplicity of environments and services, and, specific to this paper, energy and water supplied to the built environment. Although the technology is developed by Computer Science specialists, the use and deployment is traditionally performed by environmental engineers. This paper examines deployment from the perspectives of environmental engineers and scientists and asks what computer scientists can do to improve the process. The paper uses a case study to demonstrate the agile operation of WSNs within the Cloud Computing infrastructure, and thus the demand-driven, collaboration-intense paradigm of Digital Ecosystems in Complex Environments

    Experiences and issues for environmental science sensor network deployments

    Get PDF
    Sensor network research is a large and growing area of academic effort, examining technological and deployment issues in the area of environmental monitoring. These technologies are used by environmental engineers and scientists to monitor a multiplicity of environments and services, and, specific to this paper, energy and water supplied to the built environment. Although the technology is developed by Computer Science specialists, the use and deployment is traditionally performed by environmental engineers. This paper examines deployment from the perspectives of environmental engineers and scientists and asks what computer scientists can do to improve the process. The paper uses a case study to demonstrate the agile operation of WSNs within the Cloud Computing infrastructure, and thus the demand-driven, collaboration-intense paradigm of Digital Ecosystems in Complex Environments

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Performance Models for Frost Prediction in Public Cloud Infrastructures

    Get PDF
    Sensor Clouds have opened new opportunities for agricultural monitoring. These infrastructures use Wireless Sensor Networks (WSNs) to collect data on-field and Cloud Computing services to store and process them. Among other applications of Sensor Clouds, frost prevention is of special interest among grapevine producers in the Province of Mendoza - Argentina, since frost is one of the main causes of economic loss in the province. Currently, there is a wide offer of public cloud services that can be used in order to process data collected by Sensor Clouds. Therefore, there is a need for tools to determine which instance is the most appropriate in terms of execution time and economic costs for running frost prediction applications in an isolated or cluster way. In this paper, we develop models to estimate the performance of different Amazon EC2 instances for processing frosts prediction applications. Finally, we obtain results that show which is the best instance for processing these applications
    corecore