9,804 research outputs found

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675

    A combinatorial proof of the extension property for partial isometries

    Get PDF
    We present a short and self-contained proof of the extension property for partial isometries of the class of all finite metric spaces.Comment: 7 pages, 1 figure. Minor revision. Accepted to Commentationes Mathematicae Universitatis Carolina

    Minimal Obstructions for Partial Representations of Interval Graphs

    Full text link
    Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation. Two linear-time algorithms are known for solving this problem. In this paper, we characterize the minimal obstructions which make partial representations non-extendible. This generalizes Lekkerkerker and Boland's characterization of the minimal forbidden induced subgraphs of interval graphs. Each minimal obstruction consists of a forbidden induced subgraph together with at most four pre-drawn intervals. A Helly-type result follows: A partial representation is extendible if and only if every quadruple of pre-drawn intervals is extendible by itself. Our characterization leads to a linear-time certifying algorithm for partial representation extension
    corecore