1,235 research outputs found

    Extending monads with pattern matching

    Full text link
    Sequencing of effectful computations can be neatly captured using monads and elegantly written using do notation. In practice such monads often allow additional ways of composing computations, which have to be written explicitly using combinators. We identify joinads, an abstract notion of computation that is stronger than monads and captures many such ad-hoc extensions. In particular, joinads are monads with three additional operations: one of type m a → m b → m (a, b) captures various forms of parallel composition, one of type m a → m a → m a that is inspired by choice and one of type m a → m (m a) that captures aliasing of computations. Algebraically, the first two operations form a near-semiring with commutative multiplication. We introduce docase notation that can be viewed as a monadic version of case. Joinad laws imply various syntactic equivalences of programs written using docase that are analogous to equiva-lences about case. Examples of joinads that benefit from the nota-tion include speculative parallelism, waiting for a combination of user interface events, but also encoding of validation rules using the intersection of parsers

    A Data Transformation System for Biological Data Sources

    Get PDF
    Scientific data of importance to biologists in the Human Genome Project resides not only in conventional databases, but in structured files maintained in a number of different formats (e.g. ASN.1 and ACE) as well a.s sequence analysis packages (e.g. BLAST and FASTA). These formats and packages contain a number of data types not found in conventional databases, such as lists and variants, and may be deeply nested. We present in this paper techniques for querying and transforming such data, and illustrate their use in a prototype system developed in conjunction with the Human Genome Center for Chromosome 22. We also describe optimizations performed by the system, a crucial issue for bulk data

    Combining and Relating Control Effects and their Semantics

    Full text link
    Combining local exceptions and first class continuations leads to programs with complex control flow, as well as the possibility of expressing powerful constructs such as resumable exceptions. We describe and compare games models for a programming language which includes these features, as well as higher-order references. They are obtained by contrasting methodologies: by annotating sequences of moves with "control pointers" indicating where exceptions are thrown and caught, and by composing the exceptions and continuations monads. The former approach allows an explicit representation of control flow in games for exceptions, and hence a straightforward proof of definability (full abstraction) by factorization, as well as offering the possibility of a semantic approach to control flow analysis of exception-handling. However, establishing soundness of such a concrete and complex model is a non-trivial problem. It may be resolved by establishing a correspondence with the monad semantics, based on erasing explicit exception moves and replacing them with control pointers.Comment: In Proceedings COS 2013, arXiv:1309.092

    Bialgebraic Semantics for Logic Programming

    Get PDF
    Bialgebrae provide an abstract framework encompassing the semantics of different kinds of computational models. In this paper we propose a bialgebraic approach to the semantics of logic programming. Our methodology is to study logic programs as reactive systems and exploit abstract techniques developed in that setting. First we use saturation to model the operational semantics of logic programs as coalgebrae on presheaves. Then, we make explicit the underlying algebraic structure by using bialgebrae on presheaves. The resulting semantics turns out to be compositional with respect to conjunction and term substitution. Also, it encodes a parallel model of computation, whose soundness is guaranteed by a built-in notion of synchronisation between different threads

    How functional programming mattered

    Get PDF
    In 1989 when functional programming was still considered a niche topic, Hughes wrote a visionary paper arguing convincingly ‘why functional programming matters’. More than two decades have passed. Has functional programming really mattered? Our answer is a resounding ‘Yes!’. Functional programming is now at the forefront of a new generation of programming technologies, and enjoying increasing popularity and influence. In this paper, we review the impact of functional programming, focusing on how it has changed the way we may construct programs, the way we may verify programs, and fundamentally the way we may think about programs
    • …
    corecore