7,377 research outputs found

    Exact Inference Techniques for the Analysis of Bayesian Attack Graphs

    Get PDF
    Attack graphs are a powerful tool for security risk assessment by analysing network vulnerabilities and the paths attackers can use to compromise network resources. The uncertainty about the attacker's behaviour makes Bayesian networks suitable to model attack graphs to perform static and dynamic analysis. Previous approaches have focused on the formalization of attack graphs into a Bayesian model rather than proposing mechanisms for their analysis. In this paper we propose to use efficient algorithms to make exact inference in Bayesian attack graphs, enabling the static and dynamic network risk assessments. To support the validity of our approach we have performed an extensive experimental evaluation on synthetic Bayesian attack graphs with different topologies, showing the computational advantages in terms of time and memory use of the proposed techniques when compared to existing approaches.Comment: 14 pages, 15 figure

    A novel approach for analysis of attack graph

    Get PDF

    The failure tolerance of mechatronic software systems to random and targeted attacks

    Full text link
    This paper describes a complex networks approach to study the failure tolerance of mechatronic software systems under various types of hardware and/or software failures. We produce synthetic system architectures based on evidence of modular and hierarchical modular product architectures and known motifs for the interconnection of physical components to software. The system architectures are then subject to various forms of attack. The attacks simulate failure of critical hardware or software. Four types of attack are investigated: degree centrality, betweenness centrality, closeness centrality and random attack. Failure tolerance of the system is measured by a 'robustness coefficient', a topological 'size' metric of the connectedness of the attacked network. We find that the betweenness centrality attack results in the most significant reduction in the robustness coefficient, confirming betweenness centrality, rather than the number of connections (i.e. degree), as the most conservative metric of component importance. A counter-intuitive finding is that "designed" system architectures, including a bus, ring, and star architecture, are not significantly more failure-tolerant than interconnections with no prescribed architecture, that is, a random architecture. Our research provides a data-driven approach to engineer the architecture of mechatronic software systems for failure tolerance.Comment: Proceedings of the 2013 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013 August 4-7, 2013, Portland, Oregon, USA (In Print

    DrAGON: A Framework for Computing Preferred Defense Policies from Logical Attack Graphs

    Get PDF
    Attack graphs provide formalism for modelling the vulnerabilities using a compact representation scheme. Two of the most popular attack graph representations are scenario attack graphs, and logical attack graphs. In logical attack graphs, the host machines present in the network are represented as exploit nodes, while the configurations (IDS rules, firewall policies etc.) running on them are represented as fact nodes. The actual user privileges that are possible on each of these hosts are represented as privilege nodes. Existing work provides methods to analyze logical attack graphs and compute attack paths of varying costs. In this thesis we develop a framework for analyzing the attack graph from a defender perspective. Given an acyclic logical dependency attack graph we compute defense policies that cover all known exploits that can be used by the attacker and also are preferred with respect to minimizing the impacts. In contrast to previous work on analysis of logical attack graphs where quantitative costs are assigned to the vulnerabilities (exploits), our framework allows attack graph analysis using descriptions of vulnerabilities on a qualitative scale. We develop two algorithms for computing preferred defense policies that are optimal with respect to defender preferences. Our research to the best of our knowledge is the first fully qualitative approach to analyzing these logical attack graphs and formulating defense policies based on the preferences and priorities of the defender. We provide a prototype implementation of our framework that allows logical attack graphs to be input using a simple text file (custom language), or using a GUI tool in graphical markup language (GML) format. Our implementation uses the NVD (National Vulnerability Database) as the source of CVSS impact metrics for vulnerabilities in the attack graph. Our framework generates a preferred order of defense policies using an existing preference reasoner. Preliminary experiments on various attack graphs show the correctness and efficiency of our approach

    Towards a Networks-of-Networks Framework for Cyber Security

    Full text link
    Networks-of-networks (NoN) is a graph-theoretic model of interdependent networks that have distinct dynamics at each network (layer). By adding special edges to represent relationships between nodes in different layers, NoN provides a unified mechanism to study interdependent systems intertwined in a complex relationship. While NoN based models have been proposed for cyber-physical systems, in this position paper we build towards a three-layered NoN model for an enterprise cyber system. Each layer captures a different facet of a cyber system. We present in-depth discussion for four major graph- theoretic applications to demonstrate how the three-layered NoN model can be leveraged for continuous system monitoring and mission assurance.Comment: A shorter (3-page) version of this paper will appear in the Proceedings of the IEEE Intelligence and Security Informatics 2013, Seattle Washington, USA, June 4-7, 201

    Efficient attack countermeasure selection accounting for recovery and action costs

    Get PDF
    The losses arising from a system being hit by cyber attacks can be staggeringly high, but defending against such attacks can also be costly. This work proposes an attack countermeasure selection approach based on cost impact analysis that takes into account the impacts of actions by both the attacker and the defender. We consider a networked system providing services whose functionality depends on other components in the network. We model the costs and losses to service availability from compromises and defensive actions to the components, and show that while containment of the attack can be an effective defense, it may be more cost-efficient to allow parts of the attack to continue further whilst focusing on recovering services to a functional state. Based on this insight, we build a countermeasure selection method that chooses the most cost-effective action based on its impact on expected losses and costs over a given time horizon. Our method is evaluated using simulations in synthetic graphs representing network dependencies and vulnerabilities, and performs well in comparison to alternatives
    • …
    corecore