18,325 research outputs found

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation

    Juice: An SVG Rendering Peer for Java Swing

    Get PDF
    SVG—a W3C XML standard—is a relatively new language for describing low-level vector drawings. Due to its cross-platform capabilities and support for events, SVG may potentially be used in interactive GUIs/graphical front-ends. However, a complete and full-featured widget set for SVG does not exist at the time of this writing. I have researched and implemented a framework which retargets a complete and mature raster- based widget library—the JFC Swing GUI library—into a vector-based display substrate: SVG. My framework provides SVG with a full-featured widget set, as well as augmenting Swing’s platform coverage. Furthermore, by using bytecode instrumentation techniques, my Swing to SVG bridging framework is transparent to the developers— allowing them to implement their user interfaces in pure Swing

    From SpaceStat to CyberGIS: Twenty Years of Spatial Data Analysis Software

    Get PDF
    This essay assesses the evolution of the way in which spatial data analytical methods have been incorporated into software tools over the past two decades. It is part retrospective and prospective, going beyond a historical review to outline some ideas about important factors that drove the software development, such as methodological advances, the open source movement and the advent of the internet and cyberinfrastructure. The review highlights activities carried out by the author and his collaborators and uses SpaceStat, GeoDa, PySAL and recent spatial analytical web services developed at the ASU GeoDa Center as illustrative examples. It outlines a vision for a spatial econometrics workbench as an example of the incorporation of spatial analytical functionality in a cyberGIS.

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    Toward General Purpose 3D User Interfaces: Extending Windowing Systems to Three Dimensions

    Get PDF
    Recent growth in the commercial availability of consumer grade 3D user interface devices like the Microsoft Kinect and the Oculus Rift, coupled with the broad availability of high performance 3D graphics hardware, has put high quality 3D user interfaces firmly within the reach of consumer markets for the first time ever. However, these devices require custom integration with every application which wishes to use them, seriously limiting application support, and there is no established mechanism for multiple applications to use the same 3D interface hardware simultaneously. This thesis proposes that these problems can be solved in the same way that the same problems were solved for 2D interfaces: by abstracting the input hardware behind input primitives provided by the windowing system and compositing the output of applications within the windowing system before displaying it. To demonstrate the feasibility of this approach this thesis also presents a novel Wayland compositor which allows clients to create 3D interface contexts within a 3D interface space in the same way that traditional windowing systems allow applications to create 2D interface contexts (windows) within a 2D interface space (the desktop), as well as allowing unmodified 2D Wayland clients to window into the same 3D interface space and receive standard 2D input events. This implementation demonstrates the ability of consumer 3D interface hardware to support a 3D windowing system, the ability of this 3D windowing system to support applications with compelling 3D interfaces, the ability of this style of windowing system to be built on top of existing hardware accelerated graphics and windowing infrastructure, and the ability of such a windowing system to support unmodified 2D interface applications windowing into the same 3D windowing space as the 3D interface applications. This means that application developers could create compelling 3D interfaces with no knowledge of the hardware that supports them, that new hardware could be introduced without needing to integrate it with individual applications, and that users could mix whatever 2D and 3D applications they wish in an immersive 3D interface space regardless of the details of the underlying hardware

    Game Engine Solutions

    Get PDF
    The rapid development of hardware and system platforms provides a favorable foundation for game development. A game engine overview is introduced first. Then, key features and available solutions of game engines are discussed. Typical products of game engines are shown and evaluated. Finally, we summarize our findings
    corecore