2,621 research outputs found

    Using Technology Enabled Qualitative Research to Develop Products for the Social Good, An Overview

    Get PDF
    This paper discusses the potential benefits of the convergence of three recent trends for the design of socially beneficial products and services: the increasing application of qualitative research techniques in a wide range of disciplines, the rapid mainstreaming of social media and mobile technologies, and the emergence of software as a service. Presented is a scenario facilitating the complex data collection, analysis, storage, and reporting required for the qualitative research recommended for the task of designing relevant solutions to address needs of the underserved. A pilot study is used as a basis for describing the infrastructure and services required to realize this scenario. Implications for innovation of enhanced forms of qualitative research are presented

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Ami-deu : un cadre sémantique pour des applications adaptables dans des environnements intelligents

    Get PDF
    Cette thĂšse vise Ă  Ă©tendre l’utilisation de l'Internet des objets (IdO) en facilitant le dĂ©veloppement d’applications par des personnes non experts en dĂ©veloppement logiciel. La thĂšse propose une nouvelle approche pour augmenter la sĂ©mantique des applications d’IdO et l’implication des experts du domaine dans le dĂ©veloppement d’applications sensibles au contexte. Notre approche permet de gĂ©rer le contexte changeant de l’environnement et de gĂ©nĂ©rer des applications qui s’exĂ©cutent dans plusieurs environnements intelligents pour fournir des actions requises dans divers contextes. Notre approche est mise en Ɠuvre dans un cadriciel (AmI-DEU) qui inclut les composants pour le dĂ©veloppement d’applications IdO. AmI-DEU intĂšgre les services d’environnement, favorise l’interaction de l’utilisateur et fournit les moyens de reprĂ©senter le domaine d’application, le profil de l’utilisateur et les intentions de l’utilisateur. Le cadriciel permet la dĂ©finition d’applications IoT avec une intention d’activitĂ© autodĂ©crite qui contient les connaissances requises pour rĂ©aliser l’activitĂ©. Ensuite, le cadriciel gĂ©nĂšre Intention as a Context (IaaC), qui comprend une intention d’activitĂ© autodĂ©crite avec des connaissances colligĂ©es Ă  Ă©valuer pour une meilleure adaptation dans des environnements intelligents. La sĂ©mantique de l’AmI-DEU est basĂ©e sur celle du ContextAA (Context-Aware Agents) – une plateforme pour fournir une connaissance du contexte dans plusieurs environnements. Le cadriciel effectue une compilation des connaissances par des rĂšgles et l'appariement sĂ©mantique pour produire des applications IdO autonomes capables de s’exĂ©cuter en ContextAA. AmI- DEU inclut Ă©galement un outil de dĂ©veloppement visuel pour le dĂ©veloppement et le dĂ©ploiement rapide d'applications sur ContextAA. L'interface graphique d’AmI-DEU adopte la mĂ©taphore du flux avec des aides visuelles pour simplifier le dĂ©veloppement d'applications en permettant des dĂ©finitions de rĂšgles Ă©tape par Ă©tape. Dans le cadre de l’expĂ©rimentation, AmI-DEU comprend un banc d’essai pour le dĂ©veloppement d’applications IdO. Les rĂ©sultats expĂ©rimentaux montrent une optimisation sĂ©mantique potentielle des ressources pour les applications IoT dynamiques dans les maisons intelligentes et les villes intelligentes. Notre approche favorise l'adoption de la technologie pour amĂ©liorer le bienĂȘtre et la qualitĂ© de vie des personnes. Cette thĂšse se termine par des orientations de recherche que le cadriciel AmI-DEU dĂ©voile pour rĂ©aliser des environnements intelligents omniprĂ©sents fournissant des adaptations appropriĂ©es pour soutenir les intentions des personnes.Abstract: This thesis aims at expanding the use of the Internet of Things (IoT) by facilitating the development of applications by people who are not experts in software development. The thesis proposes a new approach to augment IoT applications’ semantics and domain expert involvement in context-aware application development. Our approach enables us to manage the changing environment context and generate applications that run in multiple smart environments to provide required actions in diverse settings. Our approach is implemented in a framework (AmI-DEU) that includes the components for IoT application development. AmI- DEU integrates environment services, promotes end-user interaction, and provides the means to represent the application domain, end-user profile, and end-user intentions. The framework enables the definition of IoT applications with a self-described activity intention that contains the required knowledge to achieve the activity. Then, the framework generates Intention as a Context (IaaC), which includes a self-described activity intention with compiled knowledge to be assessed for augmented adaptations in smart environments. AmI-DEU framework semantics adopts ContextAA (Context-Aware Agents) – a platform to provide context-awareness in multiple environments. The framework performs a knowledge compilation by rules and semantic matching to produce autonomic IoT applications to run in ContextAA. AmI-DEU also includes a visual tool for quick application development and deployment to ContextAA. The AmI-DEU GUI adopts the flow metaphor with visual aids to simplify developing applications by allowing step-by-step rule definitions. As part of the experimentation, AmI-DEU includes a testbed for IoT application development. Experimental results show a potential semantic optimization for dynamic IoT applications in smart homes and smart cities. Our approach promotes technology adoption to improve people’s well-being and quality of life. This thesis concludes with research directions that the AmI-DEU framework uncovers to achieve pervasive smart environments providing suitable adaptations to support people’s intentions

    Automatic Multimedia Creation Enriched with Dynamic Conceptual Data

    Get PDF
    There is a growing gap between the multimedia production and the context centric multimedia services. The main problem is the under-exploitation of the content creation design. The idea is to support dynamic content generation adapted to the user or display profile. Our work is an implementation of a web platform for automatic generation of multimedia presentations based on SMIL (Synchronized Multimedia Integration Language) standard. The system is able to produce rich media with dynamic multimedia content retrieved automatically from different content databases matching the semantic context. For this purpose, we extend the standard interpretation of SMIL tags in order to accomplish a semantic translation of multimedia objects in database queries. This permits services to take benefit of production process to create customized content enhanced with real time information fed from databases. The described system has been successfully deployed to create advanced context centric weather forecasts

    Privacy Management in Smart Environments

    Get PDF
    This thesis addresses the issue of managing privacy in smart environments, while emphasizing problems and solutions in context of interpersonal privacy. It elaborates different concepts of privacy and how smart environments interfere with these concepts. In this context this work develops solutions to understand patterns of interpersonal privacy management, to orchestrate different disclosure control methods to a composite disclosure control system, and to automate disclosure decisions using machine learning techniques.Diese Arbeit befasst sich mit dem Umgang von privaten Daten in intelligenten Umgebungen, speziell im Kontext von sozialen Interaktionen. Es werden verschiedene Konzepte des Begriffes "Privacy" erarbeitet und aufgezeigt, welche Konflikte in intelligenten Umgebungen daraus resultieren. Entsprechend werden Lösungen erarbeitet, um Muster der Informationsfreigabe in sozialen Interaktionen zu erkennen, verschiedene Methoden der Freigabekontrolle zu einer integrierten Freigabekontrolle zu kombinieren und um Freigabeentscheidungen mit maschinellen Lernverfahren vorherzusagen

    Emerging technologies for learning report (volume 3)

    Get PDF

    Degree of Scaffolding: Learning Objective Metadata: A Prototype Leaning System Design for Integrating GIS into a Civil Engineering Curriculum

    Get PDF
    Digital media and networking offer great potential as tools for enhancing classroom learning environments, both local and distant. One concept and related technological tool that can facilitate the effective application and distribution of digital educational resources is learning objects in combination with the SCORM (sharable content objects reference model) compliance framework. Progressive scaffolding is a learning design approach for educational systems that provides flexible guidance to students. We are in the process of utilizing this approach within a SCORM framework in the form of a multi-level instructional design. The associated metadata required by SCORM will describe the degree of scaffolding. This paper will discuss progressive scaffolding as it relates to SCORM compliant learning objects, within the context of the design of an application for integrating Geographic Information Systems (GIS) into the civil engineering curriculum at the University of Missouri - Rolla

    Usability, Efficiency and Security of Personal Computing Technologies

    Get PDF
    New personal computing technologies such as smartphones and personal fitness trackers are widely integrated into user lifestyles. Users possess a wide range of skills, attributes and backgrounds. It is important to understand user technology practices to ensure that new designs are usable and productive. Conversely, it is important to leverage our understanding of user characteristics to optimize new technology efficiency and effectiveness. Our work initially focused on studying older users, and personal fitness tracker users. We applied the insights from these investigations to develop new techniques improving user security protections, computational efficiency, and also enhancing the user experience. We offer that by increasing the usability, efficiency and security of personal computing technology, users will enjoy greater privacy protections along with experiencing greater enjoyment of their personal computing devices. Our first project resulted in an improved authentication system for older users based on familiar facial images. Our investigation revealed that older users are often challenged by traditional text passwords, resulting in decreased technology use or less than optimal password practices. Our graphical password-based system relies on memorable images from the user\u27s personal past history. Our usability study demonstrated that this system was easy to use, enjoyable, and fast. We show that this technique is extendable to smartphones. Personal fitness trackers are very popular devices, often worn by users all day. Our personal fitness tracker investigation provides the first quantitative baseline of usage patterns with this device. By exploring public data, real-world user motivations, reliability concerns, activity levels, and fitness-related socialization patterns were discerned. This knowledge lends insight to active user practices. Personal user movement data is captured by sensors, then analyzed to provide benefits to the user. The dynamic time warping technique enables comparison of unequal data sequences, and sequences containing events at offset times. Existing techniques target short data sequences. Our Phase-aware Dynamic Time Warping algorithm focuses on a class of sinusoidal user movement patterns, resulting in improved efficiency over existing methods. Lastly, we address user data privacy concerns in an environment where user data is increasingly flowing to manufacturer remote cloud servers for analysis. Our secure computation technique protects the user\u27s privacy while data is in transit and while resident on cloud computing resources. Our technique also protects important data on cloud servers from exposure to individual users
    • 

    corecore