36,884 research outputs found

    Molecular docking with Raccoon2 on clouds: extending desktop applications with cloud computing

    Get PDF
    Molecular docking is a computer simulation that predicts the binding affinity between two molecules, a ligand and a receptor. Large-scale docking simulations, using one receptor and many ligands, are known as structure-based virtual screening. Often used in drug discovery, virtual screening can be very computationally demanding. This is why user-friendly domain-specific web or desktop applications that enable running simulations on powerful computing infrastructures have been created. Cloud computing provides on-demand availability, pay-per-use pricing, and great scalability which can improve the performance and efficiency of scientific applications. This paper investigates how domain-specific desktop applications can be extended to run scientific simulations on various clouds. A generic approach based on scientific workflows is proposed, and a proof of concept is implemented using the Raccoon2 desktop application for virtual screening, WS-PGRADE workflows, and gUSE services with the CloudBroker platform. The presented analysis illustrates that this approach of extending a domain-specific desktop application can run workflows on different types of clouds, and indeed makes use of the on-demand scalability provided by cloud computing. It also facilitates the execution of virtual screening simulations by life scientists without requiring them to abandon their favourite desktop environment and providing them resources without major capital investment

    Extending Molecular Docking Desktop Applications with Cloud Computing Support and Analysis of Results

    Get PDF
    Structure-based virtual screening simulations, which are often used in drug discovery, can be very computationally demanding. This is why user-friendly domain-specific web or desktop applications that enable running simulations on powerful computing infrastructures have been created. This article investigates how domain-specific desktop applications can be extended to use cloud computing and how they can be part of scenarios that require sharing and analysing previous molecular docking results. A generic approach based on interviews with scientists and analysis of existing systems is proposed. A proof of concept is implemented using the Raccoon2 desktop application for virtual screening, WS-PGRADE workflows, gUSE services with the CloudBroker Platform, the structural alignment tool DeepAlign, and the ligand similarity tool LIGSIFT. The presented analysis illustrates that this approach of extending a domainspecific desktop application can use different types of clouds, thus facilitating the execution of virtual screening simulations by life scientists without requiring them to abandon their favourite desktop environment and providing them resources without major capital investment. It also shows that storing and sharing molecular docking results can produce additional conclusions such as viewing similar docking input files for verification or learning

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    The display of electronic commerce within virtual environments

    Get PDF
    In today’s competitive business environment, the majority of companies are expected to be represented on the Internet in the form of an electronic commerce site. In an effort to keep up with current business trends, certain aspects of interface design such as those related to navigation and perception may be overlooked. For instance, the manner in which a visitor to the site might perceive the information displayed or the ease with which they navigate through the site may not be taken into consideration. This paper reports on the evaluation of the electronic commerce sites of three different companies, focusing specifically on the human factors issues such as perception and navigation. Heuristic evaluation, the most popular method for investigating user interface design, is the technique employed to assess each of these sites. In light of the results from the analysis of the evaluation data, virtual environments are suggested as a way of improving the navigation and perception display constraints

    Accessing the mobile web: myth or reality?

    Get PDF
    Emerging technologies for learning report - Article exploring open web standard

    TechNews digests: Jan - Nov 2008

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month
    • …
    corecore