15,236 research outputs found

    Extending a Business Process Modeling Language for Domain-Specific Adaptation in Healthcare

    Get PDF
    It is often required to provide a modeling language that enables the representation of domain-specific problems and concepts. Domain-specific modeling approaches can be applied for that. However, these approaches usually suffer from low dissemination, missing tool support and high design costs. Thus, it might be more reasonable to adapt and extend common standard modeling languages. This research article presents an extension of the common process modeling language BPMN for modeling clinical pathways in the healthcare sector. The extension is designed methodically by application of the extension design method of Stroppi et al. (2011), which was extended regarding to a deeper domain analysis. The domain analysis considers the design of a domain ontology, requirements analysis as well as an equivalence check between domain concept and BPMN concepts. Finally, the evolved extension is compared with the CPmod modeling language of Burwitz et al. (2013) in order to discuss strengths and limitations

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    Integrated Clinical Pathways: A Model-based Holistic Method

    Get PDF
    Against the background of increasing multidisciplinarity as well as the focus on quality, transparency and economic efficiency of medical services, clinical pathways (CPs) have been established as a promising tool at the organizational level in recent years. They are primarily intended to ensure an adequate description of the care processes and to manage the balance between best treatment practice and economic viability. CPs standardize the internal care services by explicating the institution-specific knowledge with regard to recommendations for action, service portfolio, organizational structures, infrastructure, etc. of a specific service provider. The development of hospital information systems (HIS) has so far been characterized by an evolutionary development of modules in the field of laboratory, radiology, nursing and picture archiving systems as well as in the area of administrative systems. As one result of this development, the HIS usually comprises a heterogeneous network of software systems of different types and manufacturers. However, the actual control of patients by means of evidence-based processes and integration of CPs into HIS was not addressed until the recent years, when HIS manufacturers started developing modules for CP modeling and workflow support. The objective of this thesis is to provide a holistic methodical support for the description of clinical pathways and their integration into a hospital information system to finally improve the compliance of daily care to standard process definitions. Therefore, conceptual models provide an adequate mean to describe and communicate complex matters in a comprehensible form as well as to configure IT systems due to their semi-formal nature. Hence, a first research thread investigates the question, how clinical pathways can be described adequately using conceptual models. This results in an iterative design of adequate modeling languages for clinical pathways. A second research thread further investigates the question, how conceptual models of clinical pathways can be used to configure process-oriented application systems in health care. This thread therefore describes the design of a model-based method, that enables a consecutive transformation of CPs into technical (workflow) specifications, based on the principles of the Model-Driven Architecture.:A. Synopsis of the Doctoral Dissertation B. Agility in Medical Treatment Processes C. Domain Specific Modeling Language - CPmod D. BPMN4CP - Version 1.0 E. BPMN4CP - Version 2.0 F. BPMN4CP - Version 2.1 G. MDA in Health Care IS Development H. Transforming Clinical Pathways into Care Workflows I. CDA Templates - Utilizing the MediCUB

    Modeling Business Process Variability

    Get PDF
    This master thesis presents research findings on business process variability modeling. Its main goal is to analyze inherent problems of business process variability and solve them simply, innovatively and effectively. To achieve this goal, process variability is defined by analyzing scientific literature, its main problems identified and is illustrated using a healthcare running example: process variability is classified into process variability within the domain space and over time. These two forms of process variability respectively lead to process variability modeling and process model evolution problems. After defining the main problems inherent to process variability, the focus of this research project is defined: solving process variability modeling problems. First current business process modeling languages are evaluated to assess the effectiveness of their respective modeling concepts when modeling process variability, using a newly created set of evaluation criteria and the healthcare running example. The following business process modeling languages are evaluated: Event driven process chains (EPC), the Business Process Modeling Notation (BPMN) and Configurable EPC (C-EPC). Business process variability modeling and Software product line engineering have similar problems. Therefore the variability modeling concepts developed by software product line engineering are analyzed. Feature diagrams and software configuration management are the main variability management concepts provided by software product line engineering. To apply these variability management concepts to model process variability meant combining them with existing business modeling languages. Riebisch feature diagrams are combined with C-EPC to form Feature-EPC. Applying software configuration management, meant merging Change Oriented Versioning with basic EPC to create COV-EPC, and merging the Proteus Configuration Language with basic EPC to design PCL-EPC. Finally these newly created business process modeling languages are also evaluated using the newly designed evaluation criteria and the healthcare running example. EPC or BPMN are not suited to model business process variability within the domain space. C-EPC provide explicit means to model business process variability, however the process models tend to get big very fast. Furthermore the syntax, the contextual constraints and the semantics of the configuration requirements and guidelines used to configure the C-EPC process models are unclear. Feature-EPC improve C-EPC with domain modeling capability and clearly defined configuration rules: their syntax, contextual constraints and semantics have been clearly defined using a context free grammar in Backus-Naur form. Furthermore, consistent combinations of features and configuration rules are ensured using respectively constraints and a conflict resolution algorithm. However, Feature-EPC and C-EPC suffer from the same weakness: large configurable process models. In COV-EPC and PCL-EPC the problem of large configurable process models is solved. COV-EPC ensures consistent combinations of options and configuration rules using respectively validities and a conflict resolution algorithm. PCL-EPC guarantees consistent combinations of process fragments by means of a PCL specification

    Exploiting rules and processes for increasing flexibility in service composition

    Get PDF
    Recent trends in the use of service oriented architecture for designing, developing, managing, and using distributed applications have resulted in an increasing number of independently developed and physically distributed services. These services can be discovered, selected and composed to develop new applications and to meet emerging user requirements. Service composition is generally defined on the basis of business processes in which the underlying composition logic is guided by specifying control and data flows through Web service interfaces. User demands as well as the services themselves may change over time, which leads to replacing or adjusting the composition logic of previously defined processes. Coping with change is still one of the fundamental problems in current process based composition approaches. In this paper, we exploit declarative and imperative design styles to achieve better flexibility in service composition

    Extensibility of Enterprise Modelling Languages

    Get PDF
    Die Arbeit adressiert insgesamt drei Forschungsschwerpunkte. Der erste Schwerpunkt setzt sich mit zu entwickelnden BPMN-Erweiterungen auseinander und stellt deren methodische Implikationen im Rahmen der bestehenden Sprachstandards dar. Dies umfasst zum einen ganz konkrete Spracherweiterungen wie z. B. BPMN4CP, eine BPMN-Erweiterung zur multi-perspektivischen Modellierung von klinischen Behandlungspfaden. Zum anderen betrifft dieser Teil auch modellierungsmethodische Konsequenzen, um parallel sowohl die zugrunde liegende Sprache (d. h. das BPMN-Metamodell) als auch die Methode zur Erweiterungsentwicklung zu verbessern und somit den festgestellten Unzulänglichkeiten zu begegnen. Der zweite Schwerpunkt adressiert die Untersuchung von sprachunabhängigen Fragen der Erweiterbarkeit, welche sich entweder während der Bearbeitung des ersten Teils ergeben haben oder aus dessen Ergebnissen induktiv geschlossen wurden. Der Forschungsschwerpunkt fokussiert dabei insbesondere eine Konsolidierung bestehender Terminologien, die Beschreibung generisch anwendbarer Erweiterungsmechanismen sowie die nutzerorientierte Analyse eines potentiellen Erweiterungsbedarfs. Dieser Teil bereitet somit die Entwicklung einer generischen Erweiterungsmethode grundlegend vor. Hierzu zählt auch die fundamentale Auseinandersetzung mit Unternehmensmodellierungssprachen generell, da nur eine ganzheitliche, widerspruchsfreie und integrierte Sprachdefinition Erweiterungen überhaupt ermöglichen und gelingen lassen kann. Dies betrifft beispielsweise die Spezifikation der intendierten Semantik einer Sprache

    A planning approach to the automated synthesis of template-based process models

    Get PDF
    The design-time specification of flexible processes can be time-consuming and error-prone, due to the high number of tasks involved and their context-dependent nature. Such processes frequently suffer from potential interference among their constituents, since resources are usually shared by the process participants and it is difficult to foresee all the potential tasks interactions in advance. Concurrent tasks may not be independent from each other (e.g., they could operate on the same data at the same time), resulting in incorrect outcomes. To tackle these issues, we propose an approach for the automated synthesis of a library of template-based process models that achieve goals in dynamic and partially specified environments. The approach is based on a declarative problem definition and partial-order planning algorithms for template generation. The resulting templates guarantee sound concurrency in the execution of their activities and are reusable in a variety of partially specified contextual environments. As running example, a disaster response scenario is given. The approach is backed by a formal model and has been tested in experiment
    corecore