75 research outputs found

    Hamiltonicity, independence number, and pancyclicity

    Get PDF
    A graph on n vertices is called pancyclic if it contains a cycle of length l for all 3 \le l \le n. In 1972, Erdos proved that if G is a Hamiltonian graph on n > 4k^4 vertices with independence number k, then G is pancyclic. He then suggested that n = \Omega(k^2) should already be enough to guarantee pancyclicity. Improving on his and some other later results, we prove that there exists a constant c such that n > ck^{7/3} suffices

    Hamiltonian chordal graphs are not cycle extendible

    Full text link
    In 1990, Hendry conjectured that every Hamiltonian chordal graph is cycle extendible; that is, the vertices of any non-Hamiltonian cycle are contained in a cycle of length one greater. We disprove this conjecture by constructing counterexamples on nn vertices for any n≥15n \geq 15. Furthermore, we show that there exist counterexamples where the ratio of the length of a non-extendible cycle to the total number of vertices can be made arbitrarily small. We then consider cycle extendibility in Hamiltonian chordal graphs where certain induced subgraphs are forbidden, notably PnP_n and the bull.Comment: Some results from Section 3 were incorrect and have been removed. To appear in SIAM Journal on Discrete Mathematic
    • …
    corecore