3 research outputs found

    Image Compression Techniques: A Survey in Lossless and Lossy algorithms

    Get PDF
    The bandwidth of the communication networks has been increased continuously as results of technological advances. However, the introduction of new services and the expansion of the existing ones have resulted in even higher demand for the bandwidth. This explains the many efforts currently being invested in the area of data compression. The primary goal of these works is to develop techniques of coding information sources such as speech, image and video to reduce the number of bits required to represent a source without significantly degrading its quality. With the large increase in the generation of digital image data, there has been a correspondingly large increase in research activity in the field of image compression. The goal is to represent an image in the fewest number of bits without losing the essential information content within. Images carry three main type of information: redundant, irrelevant, and useful. Redundant information is the deterministic part of the information, which can be reproduced without loss from other information contained in the image. Irrelevant information is the part of information that has enormous details, which are beyond the limit of perceptual significance (i.e., psychovisual redundancy). Useful information, on the other hand, is the part of information, which is neither redundant nor irrelevant. Human usually observes decompressed images. Therefore, their fidelities are subject to the capabilities and limitations of the Human Visual System. This paper provides a survey on various image compression techniques, their limitations, compression rates and highlights current research in medical image compression

    Adaptive edge-based prediction for lossless image compression

    Get PDF
    Many lossless image compression methods have been suggested with established results hard to surpass. However there are some aspects that can be considered to improve the performance further. This research focuses on two-phase prediction-encoding method, separately studying each and suggesting new techniques.;In the prediction module, proposed Edge-Based-Predictor (EBP) and Least-Squares-Edge-Based-Predictor (LS-EBP) emphasizes on image edges and make predictions accordingly. EBP is a gradient based nonlinear adaptive predictor. EBP switches between prediction-rules based on few threshold parameters automatically determined by a pre-analysis procedure, which makes a first pass. The LS-EBP also uses these parameters, but optimizes the prediction for each pre-analysis assigned edge location, thus applying least-square approach only at the edge points.;For encoding module: a novel Burrows Wheeler Transform (BWT) inspired method is suggested, which performs better than applying the BWT directly on the images. We also present a context-based adaptive error modeling and encoding scheme. When coupled with the above-mentioned prediction schemes, the result is the best-known compression performance in the genre of compression schemes with same time and space complexity

    Modeling EMI Resulting from a Signal Via Transition Through Power/Ground Layers

    Get PDF
    Signal transitioning through layers on vias are very common in multi-layer printed circuit board (PCB) design. For a signal via transitioning through the internal power and ground planes, the return current must switch from one reference plane to another reference plane. The discontinuity of the return current at the via excites the power and ground planes, and results in noise on the power bus that can lead to signal integrity, as well as EMI problems. Numerical methods, such as the finite-difference time-domain (FDTD), Moment of Methods (MoM), and partial element equivalent circuit (PEEC) method, were employed herein to study this problem. The modeled results are supported by measurements. In addition, a common EMI mitigation approach of adding a decoupling capacitor was investigated with the FDTD method
    corecore