43,191 research outputs found

    Search via Quantum Walk

    Full text link
    We propose a new method for designing quantum search algorithms for finding a "marked" element in the state space of a classical Markov chain. The algorithm is based on a quantum walk \'a la Szegedy (2004) that is defined in terms of the Markov chain. The main new idea is to apply quantum phase estimation to the quantum walk in order to implement an approximate reflection operator. This operator is then used in an amplitude amplification scheme. As a result we considerably expand the scope of the previous approaches of Ambainis (2004) and Szegedy (2004). Our algorithm combines the benefits of these approaches in terms of being able to find marked elements, incurring the smaller cost of the two, and being applicable to a larger class of Markov chains. In addition, it is conceptually simple and avoids some technical difficulties in the previous analyses of several algorithms based on quantum walk.Comment: 21 pages. Various modifications and improvements, especially in Section

    Relative Errors for Deterministic Low-Rank Matrix Approximations

    Get PDF
    We consider processing an n x d matrix A in a stream with row-wise updates according to a recent algorithm called Frequent Directions (Liberty, KDD 2013). This algorithm maintains an l x d matrix Q deterministically, processing each row in O(d l^2) time; the processing time can be decreased to O(d l) with a slight modification in the algorithm and a constant increase in space. We show that if one sets l = k+ k/eps and returns Q_k, a k x d matrix that is the best rank k approximation to Q, then we achieve the following properties: ||A - A_k||_F^2 <= ||A||_F^2 - ||Q_k||_F^2 <= (1+eps) ||A - A_k||_F^2 and where pi_{Q_k}(A) is the projection of A onto the rowspace of Q_k then ||A - pi_{Q_k}(A)||_F^2 <= (1+eps) ||A - A_k||_F^2. We also show that Frequent Directions cannot be adapted to a sparse version in an obvious way that retains the l original rows of the matrix, as opposed to a linear combination or sketch of the rows.Comment: 16 pages, 0 figure

    Diacritic Restoration and the Development of a Part-of-Speech Tagset for the Māori Language

    Get PDF
    This thesis investigates two fundamental problems in natural language processing: diacritic restoration and part-of-speech tagging. Over the past three decades, statistical approaches to diacritic restoration and part-of-speech tagging have grown in interest as a consequence of the increasing availability of manually annotated training data in major languages such as English and French. However, these approaches are not practical for most minority languages, where appropriate training data is either non-existent or not publically available. Furthermore, before developing a part-of-speech tagging system, a suitable tagset is required for that language. In this thesis, we make the following contributions to bridge this gap: Firstly, we propose a method for diacritic restoration based on naive Bayes classifiers that act at word-level. Classifications are based on a rich set of features, extracted automatically from training data in the form of diacritically marked text. This method requires no additional resources, which makes it language independent. The algorithm was evaluated on one language, namely Māori, and an accuracy exceeding 99% was observed. Secondly, we present our work on creating one of the necessary resources for the development of a part-of-speech tagging system in Māori, that of a suitable tagset. The tagset described was developed in accordance with the EAGLES guidelines for morphosyntactic annotation of corpora, and was the result of in-depth analysis of the Māori grammar

    On Time-optimal Trajectories for a Car-like Robot with One Trailer

    Full text link
    In addition to the theoretical value of challenging optimal control problmes, recent progress in autonomous vehicles mandates further research in optimal motion planning for wheeled vehicles. Since current numerical optimal control techniques suffer from either the curse of dimens ionality, e.g. the Hamilton-Jacobi-Bellman equation, or the curse of complexity, e.g. pseudospectral optimal control and max-plus methods, analytical characterization of geodesics for wheeled vehicles becomes important not only from a theoretical point of view but also from a prac tical one. Such an analytical characterization provides a fast motion planning algorithm that can be used in robust feedback loops. In this work, we use the Pontryagin Maximum Principle to characterize extremal trajectories, i.e. candidate geodesics, for a car-like robot with one trailer. We use time as the distance function. In spite of partial progress, this problem has remained open in the past two decades. Besides straight motion and turn with maximum allowed curvature, we identify planar elastica as the third piece of motion that occurs along our extr emals. We give a detailed characterization of such curves, a special case of which, called \emph{merging curve}, connects maximum curvature turns to straight line segments. The structure of extremals in our case is revealed through analytical integration of the system and adjoint equations
    • 

    corecore