35 research outputs found

    Data-Driven Modeling For Decision Support Systems And Treatment Management In Personalized Healthcare

    Get PDF
    Massive amount of electronic medical records (EMRs) accumulating from patients and populations motivates clinicians and data scientists to collaborate for the advanced analytics to create knowledge that is essential to address the extensive personalized insights needed for patients, clinicians, providers, scientists, and health policy makers. Learning from large and complicated data is using extensively in marketing and commercial enterprises to generate personalized recommendations. Recently the medical research community focuses to take the benefits of big data analytic approaches and moves to personalized (precision) medicine. So, it is a significant period in healthcare and medicine for transferring to a new paradigm. There is a noticeable opportunity to implement a learning health care system and data-driven healthcare to make better medical decisions, better personalized predictions; and more precise discovering of risk factors and their interactions. In this research we focus on data-driven approaches for personalized medicine. We propose a research framework which emphasizes on three main phases: 1) Predictive modeling, 2) Patient subgroup analysis and 3) Treatment recommendation. Our goal is to develop novel methods for each phase and apply them in real-world applications. In the fist phase, we develop a new predictive approach based on feature representation using deep feature learning and word embedding techniques. Our method uses different deep architectures (Stacked autoencoders, Deep belief network and Variational autoencoders) for feature representation in higher-level abstractions to obtain effective and more robust features from EMRs, and then build prediction models on the top of them. Our approach is particularly useful when the unlabeled data is abundant whereas labeled one is scarce. We investigate the performance of representation learning through a supervised approach. We perform our method on different small and large datasets. Finally we provide a comparative study and show that our predictive approach leads to better results in comparison with others. In the second phase, we propose a novel patient subgroup detection method, called Supervised Biclustring (SUBIC) using convex optimization and apply our approach to detect patient subgroups and prioritize risk factors for hypertension (HTN) in a vulnerable demographic subgroup (African-American). Our approach not only finds patient subgroups with guidance of a clinically relevant target variable but also identifies and prioritizes risk factors by pursuing sparsity of the input variables and encouraging similarity among the input variables and between the input and target variables. Finally, in the third phase, we introduce a new survival analysis framework using deep learning and active learning with a novel sampling strategy. First, our approach provides better representation with lower dimensions from clinical features using labeled (time-to-event) and unlabeled (censored) instances and then actively trains the survival model by labeling the censored data using an oracle. As a clinical assistive tool, we propose a simple yet effective treatment recommendation approach based on our survival model. In the experimental study, we apply our approach on SEER-Medicare data related to prostate cancer among African-Americans and white patients. The results indicate that our approach outperforms significantly than baseline models

    Semantic Biclustering

    Get PDF
    Tato disertační práce se zaměřuje na problém hledání interpretovatelných a prediktivních vzorů, které jsou vyjádřeny formou dvojshluků, se specializací na biologická data. Prezentované metody jsou souhrnně označovány jako sémantické dvojshlukování, jedná se o podobor dolování dat. Termín sémantické dvojshlukování je použit z toho důvodu, že zohledňuje proces hledání koherentních podmnožin řádků a sloupců, tedy dvojshluků, v 2-dimensionální binární matici a zárove ň bere také v potaz sémantický význam prvků v těchto dvojshlucích. Ačkoliv byla práce motivována biologicky orientovanými daty, vyvinuté algoritmy jsou obecně aplikovatelné v jakémkoli jiném výzkumném oboru. Je nutné pouze dodržet požadavek na formát vstupních dat. Disertační práce představuje dva originální a v tomto ohledu i základní přístupy pro hledání sémantických dvojshluků, jako je Bicluster enrichment analysis a Rule a tree learning. Jelikož tyto metody nevyužívají vlastní hierarchické uspořádání termů v daných ontologiích, obecně je běh těchto algoritmů dlouhý čin může docházet k indukci hypotéz s redundantními termy. Z toho důvodu byl vytvořen nový operátor zjemnění. Tento operátor byl včleněn do dobře známého algoritmu CN2, kde zavádí dvě redukční procedury: Redundant Generalization a Redundant Non-potential. Obě procedury pomáhají dramaticky prořezat prohledávaný prostor pravidel a tím umožňují urychlit proces indukce pravidel v porovnání s tradičním operátorem zjemnění tak, jak je původně prezentován v CN2. Celý algoritmus spolu s redukčními metodami je publikován ve formě R balííčku, který jsme nazvali sem1R. Abychom ukázali i možnost praktického užití metody sémantického dvojshlukování na reálných biologických problémech, v disertační práci dále popisujeme a specificky upravujeme algoritmus sem1R pro dv+ úlohy. Zaprvé, studujeme praktickou aplikaci algoritmu sem1R v analýze E-3 ubikvitin ligázy v trávicí soustavě s ohledem na potenciál regenerace tkáně. Zadruhé, kromě objevování dvojshluků v dat ech genové exprese, adaptujeme algoritmus sem1R pro hledání potenciálne patogenních genetických variant v kohortě pacientů.This thesis focuses on the problem of finding interpretable and predic tive patterns, which are expressed in the form of biclusters, with an orientation to biological data. The presented methods are collectively called semantic biclustering, as a subfield of data mining. The term semantic biclustering is used here because it reflects both a process of finding coherent subsets of rows and columns in a 2-dimensional binary matrix and simultaneously takes into account a mutual semantic meaning of elements in such biclusters. In spite of focusing on applications of algorithms in biological data, the developed algorithms are generally applicable to any other research field, there are only limitations on the format of the input data. The thesis introduces two novel, and in that context basic, approaches for finding semantic biclusters, as Bicluster enrichment analysis and Rule and tree learning. Since these methods do not exploit the native hierarchical order of terms of input ontologies, the run-time of algorithms is relatively long in general or an induced hypothesis might have terms that are redundant. For this reason, a new refinement operator has been invented. The refinement operator was incorporated into the well-known CN2 algorithm and uses two reduction procedures: Redundant Generalization and Redundant Non-potential, both of which help to dramatically prune the rule space and consequently, speed-up the entire process of rule induction in comparison with the traditional refinement operator as is presented in CN2. The reduction procedures were published as an R package that we called sem1R. To show a possible practical usage of semantic biclustering in real biological problems, the thesis also describes and specifically adapts the algorithm for two real biological problems. Firstly, we studied a practical application of sem1R algorithm in an analysis of E-3 ubiquitin ligase in the gastrointestinal tract with respect to tissue regeneration potential. Secondly, besides discovering biclusters in gene expression data, we adapted the sem1R algorithm for a different task, concretely for finding potentially pathogenic genetic variants in a cohort of patients

    Graphical models for biclustering and information retrieval in gene expression data

    Get PDF
    The cell coordinates its biological response to the environment partly via the selective synthesis of thousands of unique RNA and protein molecules. Understanding the molecular biology of the cell is thus essential to the advancement of areas such as health care, agriculture, and energy production, but requires the ability to simultaneously acquire information about thousands of molecules in a sample. Recent high-throughput measurement technologies address this concern. While being useful, they generate a high volume of data and bring in methodological challenges, effectively shifting the bottleneck in molecular biology research from data acquisition to data analysis. In particular, an important challenge is the genome-wide analysis of how RNA is transcribed under different conditions, organisms, and tissues, a process known as gene expression. When developing computational methods for biological data analysis tasks, probabilistic frameworks constitute promising approaches due to their flexibility, soundness, and ability to handle noisy data. In this thesis, the contributions are in the development of probabilistic methods for two relevant tasks in genome-wide gene expression analysis, namely biclustering and information retrieval. Biclustering concerns the simultaneous grouping of objects, e.g., genes, and conditions. The first contribution is the development of a Bayesian extension to an existing biclustering model. The second contribution is a novel probabilistic method that allows deriving a hierarchical organization of microarrays in a gene expression data set and at the same time indicate the genes that characterize the hierarchy. Finally, the third contribution is a general probabilistic biclustering framework that easily lends itself to different data types and model assumptions. Information retrieval in gene expression data is needed because of the increasing amount of available data stored in public databases. Two probabilistic methods for information retrieval are proposed. The models are used in a series of biological case studies that show how the proposed approaches have the potential to accelerate biological research by jointly analyzing data from different studies. In particular, several connections between biological conditions found by the models either correspond to existing biological knowledge or were used in a confirmatory follow-up study to obtain novel biological findings

    DISTILLER: a data integration framework to reveal condition dependency of complex regulons in Escherichia coli

    Get PDF
    DISTILLER, a data integration framework for the inference of transcriptional module networks, is presented and used to investigate the condition dependency and modularity in Escherichia coli networks

    Graphical Model approaches for Biclustering

    Get PDF
    In many scientific areas, it is crucial to group (cluster) a set of objects, based on a set of observed features. Such operation is widely known as Clustering and it has been exploited in the most different scenarios ranging from Economics to Biology passing through Psychology. Making a step forward, there exist contexts where it is crucial to group objects and simultaneously identify the features that allow to recognize such objects from the others. In gene expression analysis, for instance, the identification of subsets of genes showing a coherent pattern of expression in subsets of objects/samples can provide crucial information about active biological processes. Such information, which cannot be retrieved by classical clustering approaches, can be extracted with the so called Biclustering, a class of approaches which aim at simultaneously clustering both rows and columns of a given data matrix (where each row corresponds to a different object/sample and each column to a different feature). The problem of biclustering, also known as co-clustering, has been recently exploited in a wide range of scenarios such as Bioinformatics, market segmentation, data mining, text analysis and recommender systems. Many approaches have been proposed to address the biclustering problem, each one characterized by different properties such as interpretability, effectiveness or computational complexity. A recent trend involves the exploitation of sophisticated computational models (Graphical Models) to face the intrinsic complexity of biclustering, and to retrieve very accurate solutions. Graphical Models represent the decomposition of a global objective function to analyse in a set of smaller/local functions defined over a subset of variables. The advantages in using Graphical Models relies in the fact that the graphical representation can highlight useful hidden properties of the considered objective function, plus, the analysis of smaller local problems can be dealt with less computational effort. Due to the difficulties in obtaining a representative and solvable model, and since biclustering is a complex and challenging problem, there exist few promising approaches in literature based on Graphical models facing biclustering. 3 This thesis is inserted in the above mentioned scenario and it investigates the exploitation of Graphical Models to face the biclustering problem. We explored different type of Graphical Models, in particular: Factor Graphs and Bayesian Networks. We present three novel algorithms (with extensions) and evaluate such techniques using available benchmark datasets. All the models have been compared with the state-of-the-art competitors and the results show that Factor Graph approaches lead to solid and efficient solutions for dataset of contained dimensions, whereas Bayesian Networks can manage huge datasets, with the overcome that setting the parameters can be not trivial. As another contribution of the thesis, we widen the range of biclustering applications by studying the suitability of these approaches in some Computer Vision problems where biclustering has been never adopted before. Summarizing, with this thesis we provide evidence that Graphical Model techniques can have a significant impact in the biclustering scenario. Moreover, we demonstrate that biclustering techniques are ductile and can produce effective solutions in the most different fields of applications

    Mining large collections of gene expression data to elucidate transcriptional regulation of biological processes

    Get PDF
    A vast amount of gene expression data is available to biological researchers. As of October 2010, the GEO database has 45,777 chips of publicly available gene expression pro ling data from the Affymetrix (HGU133v2) GeneChip platform, representing 2.5 billion numerical measurements. Given this wealth of data, `meta-analysis' methods allowing inferences to be made from combinations of samples from different experiments are critically important. This thesis explores the application of localized pattern-mining approaches, as exemplified by biclustering, for large-scale gene expression analysis. Biclustering methods are particularly attractive for the analysis of large compendia of gene expression data as they allow the extraction of relationships that occur only across subsets of genes and samples. Standard correlation methods, however, assume a single correlation relationship between two genes occurs across all samples in the data. There are a number of existing biclustering methods, but as these did not prove suitable for large scale analysis, a novel method named `IslandCluster' was developed. This method provided a framework for investigating the results of different approaches to biclustering meta-analysis. The biclustering methods used in this work involve preprocessing of gene expression data into a unified scale in order to assess the significance of expression patterns. A novel discretisation approach is shown to identify distinct classes of genes' expression values more appropriately than approaches reported in the literature. A Gene Expression State Transformation (`GESTr') introduced as the first reported modelling of the biological state of expression on a unified scale and is shown to facilitate effective meta-analysis. Localised co-dependency analysis is introduced, a paradigm for identifying transcriptional relationships from gene expression data. Tools implementing this analysis were developed and used to analyse specificity of transcriptional relationships, to distinguish related subsets within a set of transcription factor (TF) targets and to tease apart combinatorial regulation of a set of targets by multiple TFs. The state of pluripotency, from which a mammalian cell has the potential to differentiate into any cell from any of the three adult germ layers, is maintained by forced expression of Nanog and may be induced from a non-pluripotent state by the expression of Oct4, Sox2, Klf4 and cMyc. Analysis of cMyc regulatory targets shed light on a recent proposition that cMyc induces an `embryonic stem cell like' transcriptional signature outside embryonic stem (ES) cells, revealing a cMyc-responsive subset of the signature and identifying ES cell expressed targets with evidence of broad cMyc-induction. Regulatory targets through which cMyc, Oct4, Sox2 and Nanog may maintain or induce pluripotency were identified, offering insight into transcriptional mechanisms involved in the control of pluripotency and demonstrating the utility of the novel analysis approaches presented in this work

    Probabilistic discovery of overlapping cellular processes and their regulation

    Full text link

    Bayesian Approaches For Modeling Variation

    Get PDF
    A core focus of statistics is determining how much of the variation in data may be attributed to the signal of interest, and how much to noise. When the sources of variation are many and complex, a Bayesian approach to data analysis offers a number of advantages. In this thesis, we propose and implement new Bayesian methods for modeling variation in two general settings. The first setting is high-dimensional linear regression where the unknown error variance is also of interest. Here, we show that a commonly used class of conjugate shrinkage priors can lead to underestimation of the error variance. We then extend the Spike-and-Slab Lasso (SSL, Rockova and George, 2018) to the unknown variance case, using an alternative, independent prior framework. This extended procedure outperforms both the fixed variance approach and alternative penalized likelihood methods on both simulated and real data. For the second setting, we move from univariate response data where the predictors are known, to multivariate response data in which potential predictors are unobserved. In this setting, we first consider the problem of biclustering, where a motivating example is to find subsets of genes which have similar expression in a subset of patients. For this task, we propose a new biclustering method called Spike-and-Slab Lasso Biclustering (SSLB). SSLB utilizes the SSL prior to find a doubly-sparse factorization of the data matrix via a fast EM algorithm. Applied to both a microarray dataset and a single-cell RNA-sequencing dataset, SSLB recovers biologically meaningful signal in the data. The second problem we consider in this setting is nonlinear factor analysis. The goal here is to find low-dimensional, unobserved ``factors\u27\u27 which drive the variation in the high-dimensional observed data in a potentially nonlinear fashion. For this purpose, we develop factor analysis BART (faBART), an MCMC algorithm which alternates sampling from the posterior of (a) the factors and (b) a functional approximation to the mapping from the factors to the data. The latter step utilizes Bayesian Additive Regression Trees (BART, Chipman et al., 2010). On a variety of simulation settings, we demonstrate that with only the observed data as the input, faBART is able to recover both the unobserved factors and the nonlinear mapping

    Development of mathematical methods for modeling biological systems

    Get PDF
    corecore