2 research outputs found

    UPIR: Toward the Design of Unified Parallel Intermediate Representation for Parallel Programming Models

    Full text link
    The complexity of heterogeneous computing architectures, as well as the demand for productive and portable parallel application development, have driven the evolution of parallel programming models to become more comprehensive and complex than before. Enhancing the conventional compilation technologies and software infrastructure to be parallelism-aware has become one of the main goals of recent compiler development. In this paper, we propose the design of unified parallel intermediate representation (UPIR) for multiple parallel programming models and for enabling unified compiler transformation for the models. UPIR specifies three commonly used parallelism patterns (SPMD, data and task parallelism), data attributes and explicit data movement and memory management, and synchronization operations used in parallel programming. We demonstrate UPIR via a prototype implementation in the ROSE compiler for unifying IR for both OpenMP and OpenACC and in both C/C++ and Fortran, for unifying the transformation that lowers both OpenMP and OpenACC code to LLVM runtime, and for exporting UPIR to LLVM MLIR dialect.Comment: Typos corrected. Format update

    Compute units in OpenMP: extensions for heterogeneous parallel programming

    Get PDF
    This article evaluates the current support for heterogeneous OpenMP 5.2 applications regarding the simultaneous activation of host and device computing units (e.g., CPUs, GPUs, or FPGAs). The article identifies limitations in the current OpenMP specification and describes the design and implementation of novel OpenMP extensions and runtime support for heterogeneous parallel programming. The Compute Unit (CUs) abstraction is introduced in the OpenMP programming model. The Compute Unit abstraction is defined in terms of an aggregation of computing elements (e.g., CPUs, GPUs, FPGAs). On top of CUs, the article describes dynamic work sharing constructs and schedulers that address the inherent differences in compute power of host and device CUs. New constructs and the corresponding runtime support are described for the new abstractions. The article evaluates the case of a hybrid multilevel parallelization of the NPB-MZ benchmark suite. The implementation exploits both coarse-grain and fine-grain parallelism, mapped to CUs of different nature (GPUs and CPUs). All CUs are activated using the new extensions and runtime support. We compare hybrid and nonhybrid executions under two state-of-the-art work-distribution schemes (Static and Dynamic Task schedulers). On a computing node composed of one AMD EPYC 7742 @ 2.250GHz (64 cores and 2 threads/core, totalling 128 threads per node) and 2 GPU AMD Radeon Instinct MI50 with 32GB, hybrid executions present speedups from 1.08 up to 3.18 with respect to a nonhybrid GPU implementation, depending on the number of activated CUs.This work was supported by the Spanish Ministry of Science and Technology (PID2019-107255GB).Peer ReviewedPostprint (published version
    corecore