26 research outputs found

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Actas da 10ª Conferência sobre Redes de Computadores

    Get PDF
    Universidade do MinhoCCTCCentro AlgoritmiCisco SystemsIEEE Portugal Sectio

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Architectural model for Collaboration in The Internet of Things : a Fog Computing based approach

    Get PDF
    Through sensors, actuators and other Internet-connected devices, applications and services are becoming able to perceive and react on the real world. Seamlessly integrating people, and devices is no longer a futuristic idea. Converging the physical world with the human-made realm into one network is rather a present and promising approach called The Internet of Things (IoT). A closer look at the phenomenon of IoT reveals many problems. The current trends are focusing on Cloud-centric approaches to deal with the heterogeneity and the scale of this network. The blessing of the Cloud computing becomes, however, a burden on latency-sensitive applications, which require processing and storage mechanisms in their proximity to meet low-latency, location and better context-awareness requirements. In addition to mobility support and high geographical distribution requirements. Fog computing is a new concept that focuses on extending the Cloud paradigm to the edge of the Internet of Things, via providing communication, computing, and access management support. This research project foresees and is driven by the promising opportunities of the concept behind Fog computing. In this thesis, we leverage this new concept by delivering a Collaboration Architecture for the Fog computing. This architecture constitutes a referential model to better design and to implement Fog platforms. It powers the freedom of abstraction to make development and deployment at the Fog nodes easier and more efficient. Moreover, it provides a nest where IoT-connected objects can interact and collaborate. To this end, we introduce expressive mechanisms to define and abstract objects, data analytics, and services. To leverage Fog nodes with dynamic services and service-based collaboration, we propose the concept of Operation: a formal way to dynamically generate new services through mechanisms such as aggregation, composition, and transformation. Finally, we deliver a comprehensive study and a collaboration-oriented access control model for the proposed architecture. Dans les dernières années, les avantages du Cloud Computing l’ont mis au cœur des architectures proposées pour l’Internet des Objets (IoT). L’infrastructure homogène, prédictible et performante a fait du Cloud une solution adéquate pour le traitement et l’analyse des données en provenance des objets de l’IoT. Cependant, les avantages de l’utilisation du Cloud se révèlent problématiques pour les systèmes IoT sensibles au temps de latence, et qui exigent la distribution géographique, la prise en compte de l’environnement local ainsi que la mobilité des objets. Le Fog Computing est un nouveau concept visant l'extension du Cloud vers la périphérie de l’IoT. Ainsi, il envisage une couche de nœuds (Fogs) permettant de fournir aux objets connectés un support à la gestion de la communication, à la persistance des données et à la gestion d’accès. Ce projet de recherche est motivé par les opportunités prometteuses du concept du Fog computing. Il anticipe ces opportunités et vise à proposer une architecture fédératrice, jusqu’à présent inexistante, pour la collaboration dans le Fog. De ce fait, dans cette thèse, nous tirons parti de l'idée derrière ce nouveau concept afin de proposer une architecture à cette fin. Cette architecture consiste en un modèle référentiel qui promeut à la fois une grande abstraction dans la conception des applications, ainsi que la facilité et l'efficacité dans le développement et le déploiement au niveau des nœuds de la couche du Fog. En effet, pour renforcer ces nœuds avec des services dynamiques, nous proposons des moyens formels pour la génération dynamique de nouveaux services à travers des opérations d'agrégations, de compositions ou de transformations. En conséquence, les nœuds du Fog deviennent un nid où les objets connectés peuvent interagir et collaborer à travers des mécanismes expressifs de définition et d'abstraction d’objets, des analyses de données et des services

    Applying named data networking in mobile ad hoc networks

    Get PDF
    This thesis presents the Name-based Mobile Ad-hoc Network (nMANET) approach to content distribution that ensure and enables responsible research on applying named data networking protocol in mobile ad-hoc networks. The test framework of the nMANET approach allows reproducibility of experiments and validation of expected results based on analysis of experimental data. The area of application for nMANETs is the distribution of humanitarian information in emergency scenarios. Named-Data Networking (NDN) and ad-hoc mobile communication allow exchange of emergency information in situations where central services such as cellular towers and electric systems are disrupted. The implemented prototype enables researchers to reproduce experiments on content distribution that consider constraints on mobile resources, such as the remaining power of mobile devices and available network bandwidth. The nMANET framework validates a set of experiments by measuring network traffic and energy consumption from both real mobile devices and those in a simulated environment. Additionally, this thesis presents results from experiments in which the nMANET forwarding strategies and traditional wireless services, such as hotpost, are analysed and compared. This experimental data represents the evidence that supports and validates the methodology presented in this thesis. The design and implementation of an nMANET prototype, the Java NDN Forwarder Daemon (JNFD) is presented as a testing framework, which follows the principles of continuous integration, continuous testing and continuous deployment. This testing framework is used to validate JNFD and IP-based technologies, such as HTTP in a MANET using the OLSR routing protocol, as well as traditional wireless infrastructure mode wireless. The set of experiments executed, in a small network of Android smart-phones connected in ad-hoc mode and in a virtual ad-hoc network simulator show the advantages of reproducibility using nMANET features. JNFD is open source, all experiments are scripted, they are repeatable and scalable. Additionally, JNFD utilises real GPS traces to simulate mobility of nodes during experiments. This thesis provides experimental evidence to show that nMANET allows reproducibility and validation of a wide range of future experiments applying NDN on MANETs
    corecore