1,258 research outputs found

    Multicast Mobility in Mobile IP Version 6 (MIPv6) : Problem Statement and Brief Survey

    Get PDF
    Publisher PD

    Improving Network Performance, Security and Robustness in Hybrid Wireless Networks Using a Satellite Overlay

    Get PDF
    In this thesis we propose that the addition of a satellite overlay to large or dense wireless networks will result in improvement in application performance and network reliability, and also enable efficient security solutions that are well-suited for wireless nodes with limited resources. We term the combined network as a hybrid wireless network. Through analysis, network modeling and simulation, we quantify the improvement in end-to-end performance in such networks, compared to flat wireless networks. We also propose a new analytical method for modeling and estimating the performance of hybrid wireless networks. We create a loss network model for hybrid networks using the hierarchical reduced loss network model, adapted for packet-switched networks. Applying a fixed point approximation method on the set of relations modeling the hierarchical loss network, we derive a solution that converges to a fixed point for the parameter set. We analyze the sensitivity of the performance metric to variations in the network parameters by applying Automatic Differentiation to the performance model. We thus develop a method for parameter optimization and sensitivity analysis of protocols for designing hybrid networks. We investigate how the satellite overlay can help to implement better solutions for secure group communications in hybrid wireless networks. We propose a source authentication protocol for multicast communications that makes intelligent use of the satellite overlay, by modifying and extending TESLA certificates. We also propose a probabilistic non-repudiation technique that uses the satellite as a proxy node. We describe how the authentication protocol can be integrated with a topology-aware hierarchical multicast routing protocol to design a secure multicast routing protocol that is robust to active attacks. Lastly, we examine how the end-to-end delay is adversely affected when IP Security protocol (IPSEC) and Secure Socket Layer protocol (SSL) are applied to unicast communications in hybrid networks. For network-layer security with low delay, we propose the use of the Layered IPSEC protocol, with a modified Internet Key Exchange protocol. For secure web browsing with low delay, we propose the Dual-mode SSL protocol. We present simulation results to quantify the performance improvement with our proposed protocols, compared to the traditional solutions

    Overlay networks for smart grids

    Get PDF

    A Review of the Energy Efficient and Secure Multicast Routing Protocols for Mobile Ad hoc Networks

    Full text link
    This paper presents a thorough survey of recent work addressing energy efficient multicast routing protocols and secure multicast routing protocols in Mobile Ad hoc Networks (MANETs). There are so many issues and solutions which witness the need of energy management and security in ad hoc wireless networks. The objective of a multicast routing protocol for MANETs is to support the propagation of data from a sender to all the receivers of a multicast group while trying to use the available bandwidth efficiently in the presence of frequent topology changes. Multicasting can improve the efficiency of the wireless link when sending multiple copies of messages by exploiting the inherent broadcast property of wireless transmission. Secure multicast routing plays a significant role in MANETs. However, offering energy efficient and secure multicast routing is a difficult and challenging task. In recent years, various multicast routing protocols have been proposed for MANETs. These protocols have distinguishing features and use different mechanismsComment: 15 page

    Internames: a name-to-name principle for the future Internet

    Full text link
    We propose Internames, an architectural framework in which names are used to identify all entities involved in communication: contents, users, devices, logical as well as physical points involved in the communication, and services. By not having a static binding between the name of a communication entity and its current location, we allow entities to be mobile, enable them to be reached by any of a number of basic communication primitives, enable communication to span networks with different technologies and allow for disconnected operation. Furthermore, with the ability to communicate between names, the communication path can be dynamically bound to any of a number of end-points, and the end-points themselves could change as needed. A key benefit of our architecture is its ability to accommodate gradual migration from the current IP infrastructure to a future that may be a ubiquitous Information Centric Network. Basic building blocks of Internames are: i) a name-based Application Programming Interface; ii) a separation of identifiers (names) and locators; iii) a powerful Name Resolution Service (NRS) that dynamically maps names to locators, as a function of time/location/context/service; iv) a built-in capacity of evolution, allowing a transparent migration from current networks and the ability to include as particular cases current specific architectures. To achieve this vision, shared by many other researchers, we exploit and expand on Information Centric Networking principles, extending ICN functionality beyond content retrieval, easing send-to-name and push services, and allowing to use names also to route data in the return path. A key role in this architecture is played by the NRS, which allows for the co-existence of multiple network "realms", including current IP and non-IP networks, glued together by a name-to-name overarching communication primitive.Comment: 6 page

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Hybrid Multicasting Using Automatic Multicast Tunnels (AMT)

    Get PDF
    Native Multicast plays an important role in distributing and managing delivery of some of the most popular Internet applications, such as IPTV and media delivery. However, due to patchy support and the existence of multiple approaches for Native Multicast, the support for Native Multicast is fragmented into isolated areas termed Multicast Islands. This renders Native Multicast unfit to be used as an Internet wide application. Instead, Application Layer Multicast, which does not have such network requirements but is more expensive in terms of bandwidth and overhead, can be used to connect the native multicast islands. This thesis proposes Opportunistic Native Multicast (ONM) which employs Application LayerMulticast (ALM), on top of a DHT-based P2P overlay network, and AutomaticMulticast Tunnelling (AMT) to connect these islands. ALM will be used for discovery and initiating the AMT tunnels. The tunnels will encapsulate the traffic going between islands' Primary Nodes (PNs). AMT was used for its added benefits such as security and being better at traffic shaping and Quality Of Service (QoS). While different approaches for connecting multicast islands exists, the system proposed in the thesis was designed with the following characteristics in mind: scalability, availability, interoperability, self-adaptation and efficiency. Importantly, by utilising AMT tunnels, this approach has unique properties that improve network security and management

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Hybrid CoAP-based resource discovery for the Internet of Things

    Get PDF
    Enabling automatic, efficient and scalable discovery of the resources provided by constrained low-power sensor and actuator networks is an important element to empower the transformation towards the Internet of Things (IoT). To this end, many centralized and distributed resource discovery approaches have been investigated. Clearly, each approach has its own motivations, advantages and drawbacks. In this article, we present a hybrid centralized/distributed resource discovery solution aiming to get the most out of both approaches. The proposed architecture employs the well-known Constrained Application Protocol (CoAP) and features a number of interesting discovery characteristics including scalability, time and cost efficiency, and adaptability. Using such a solution, network nodes can automatically and rapidly detect the presence of Resource Directories (RDs), via a proactive RD discovery mechanism, and perform discovery tasks through them. Nodes may, alternatively, fall back automatically to efficient fully-distributed discovery operations achieved through Trickle-enabled, CoAP-based technics. The effectiveness of the proposed architecture has been demonstrated by formal analysis and experimental evaluations on dedicated IoT platforms
    • …
    corecore