10,091 research outputs found

    A Multiwavelength Study of a Sample of 70 μm Selected Galaxies in the COSMOS Field. II. The Role of Mergers in Galaxy Evolution

    Get PDF
    We analyze the morphological properties of a large sample of 1503 70 μm selected galaxies in the COSMOS field spanning the redshift range 0.01 10^(12) L_☉) being up to ~50%. We also find that the fraction of spirals drops dramatically with L_(IR). Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L_(IR) 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U – V color of the galaxies in our sample peaks in the green valley (= 1.1) with a large spread at bluer and redder colors and with the major mergers peaking more strongly in the green valley than the rest of the morphological classes. We argue that, given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase, it is plausible for the observed red sequence of massive ellipticals (<10^(12) M_☉) to have been formed entirely by gas-rich major mergers

    Interoceptive robustness through environment-mediated morphological development

    Full text link
    Typically, AI researchers and roboticists try to realize intelligent behavior in machines by tuning parameters of a predefined structure (body plan and/or neural network architecture) using evolutionary or learning algorithms. Another but not unrelated longstanding property of these systems is their brittleness to slight aberrations, as highlighted by the growing deep learning literature on adversarial examples. Here we show robustness can be achieved by evolving the geometry of soft robots, their control systems, and how their material properties develop in response to one particular interoceptive stimulus (engineering stress) during their lifetimes. By doing so we realized robots that were equally fit but more robust to extreme material defects (such as might occur during fabrication or by damage thereafter) than robots that did not develop during their lifetimes, or developed in response to a different interoceptive stimulus (pressure). This suggests that the interplay between changes in the containing systems of agents (body plan and/or neural architecture) at different temporal scales (evolutionary and developmental) along different modalities (geometry, material properties, synaptic weights) and in response to different signals (interoceptive and external perception) all dictate those agents' abilities to evolve or learn capable and robust strategies

    A Multiwavelength Study of a Sample of 70 micron Selected Galaxies in the COSMOS Field II: The Role of Mergers in Galaxy Evolution

    Full text link
    We analyze the morphological properties of a large sample of 1503 70 micron selected galaxies in the COSMOS field spanning the redshift range 0.01<z< 3.5 with a median redshift of 0.5 and an infrared luminosity range of 10^8<L_IR<10^14L_sun with a median luminosity of 10^11.4 L_sun. In general these galaxies are massive, with a stellar mass range of 10^10-10^12 M_sun, and luminous, with -25<M_K<-20. We find a strong correlation between the fraction of major mergers and L_IR, with the fraction at the highest luminosity being up to 50%. We also find that the fraction of spirals drops dramatically with L_IR. Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities. The precise fraction of mergers in any given L_IR bin varies by redshift due to sources at z>1 being difficult to classify and subject to the effects of band pass shifting, therefore, these numbers can only be considered lower limits. At z<1, where the morphological classifications are most robust, major mergers clearly dominate the ULIRG population (50-80%) and are important for the LIRG population (25-40%). At z>1 the fraction of major mergers is at least 30-40% for ULIRGs. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. We argue that given the number of major gas-rich mergers observed and the relatively short timescale that they would be observable in the (U)LIRG phase that it is plausible for the observed red sequence of massive ellipticals (<10^12 M_sun) to have been formed entirely by gas-rich major mergers.Comment: 30 pages, 27 figures, and 6 tables. Accepted for publication in ApJ. The full resolution version can be found at: http://www.ifa.hawaii.edu/~jeyhan/paperII/Kartaltepe_70mic_PaperII.pd

    Model-based pattern speed estimates for 38 barred galaxies

    Full text link
    We have modelled 38 barred galaxies by using near-IR and optical data from the Ohio State University Bright Spiral Galaxy Survey. We constructed the gravitational potentials of the galaxies from HH-band photometry, assuming constant mass-to-light ratio. The halo component we chose corresponds to the so called universal rotation curve. In each case, we used the response of gaseous and stellar particle disc to rigidly rotating potential to determine the pattern speed. We find that the pattern speed of the bar depends roughly on the morphological type. The average value of corotation resonance radius to bar radius, R\mathcal{R}, increases from 1.15±0.251.15 \pm 0.25 in types SB0/a -- SBab to 1.44±0.291.44 \pm 0.29 in SBb and 1.82±0.631.82\pm 0.63 in SBbc -- SBc. Within the error estimates for the pattern speed and bar radius, all galaxies of type SBab or earlier have a fast bar (R1.4\mathcal{R} \le 1.4), whereas the bars in later type galaxies include both fast and slow rotators. Of 16 later type galaxies with a nominal value of R>1.4\mathcal{R} > 1.4, there are five cases, where the fast rotating bar is ruled out by the adopted error estimates. We also study the correlation between the parameter R\mathcal{R} and other galactic properties. The clearest correlation is with the bar size: the slowest bars are also the shortest bars when compared to the galaxy size. A weaker correlation is seen with bar strength in a sense that slow bars tend to be weaker. These correlations leave room for a possibility that the determined pattern speed in many galaxies corresponds actually that of the spiral, which rotates more slowly than the bar. No clear correlation is seen with either the galaxy luminosity or colour.Comment: 18 pages, 13 figures, accepted for publication in MNRA

    Photomorphic analysis techniques: An interim spatial analysis using satellite remote sensor imagery and historical data

    Get PDF
    The use of machine scanning and/or computer-based techniques to provide greater objectivity in the photomorphic approach was investigated. Photomorphic analysis and its application in regional planning are discussed. Topics included: delineation of photomorphic regions; inadequacies of existing classification systems; tonal and textural characteristics and signature analysis techniques; pattern recognition and Fourier transform analysis; and optical experiments. A bibliography is included

    Computer Aided Multi-Data Fusion Dismount Modeling

    Get PDF
    Recent research efforts strive to address the growing need for dismount surveillance, dismount tracking and characterization. Current work in this area utilizes hyperspectral and multispectral imaging systems to exploit spectral properties in order to detect areas of exposed skin and clothing characteristics. Because of the large bandwidth and high resolution, hyperspectral imaging systems pose great ability to characterize and detect dismounts. A multi-data dismount modeling system where the development and manipulation of dismount models is a necessity. This thesis demonstrates a computer aided multi-data fused dismount model, which facilitates studies of dismount detection, characterization and identification. The system is created by fusing: pixel mapping, signature attachment, and pixel mixing algorithms. The developed multi-data dismount model produces simulated hyperspectral images that closely represent an image collected by a hyperspectral imager. The dismount model can be modified to fit the researcher\u27s needs. The multi-data model structure allows the employment of a database of signatures acquired from several sources. The model is flexible enough to allow further exploitation, enhancement and manipulation. The multi-data dismount model developed in this effort fulfills the need for a dismount modeling tool in a hyperspectral imaging environment
    corecore