25 research outputs found

    Survey on Deduplication Techniques in Flash-Based Storage

    Get PDF
    Data deduplication importance is growing with the growth of data volumes. The domain of data deduplication is in active development. Recently it was influenced by appearance of Solid State Drive. This new type of disk has significant differences from random access memory and hard disk drives and is widely used now. In this paper we propose a novel taxonomy which reflects the main issues related to deduplication in Solid State Drive. We present a survey on deduplication techniques focusing on flash-based storage. We also describe several Open Source tools implementing data deduplication and briefly describe open research problems related to data deduplication in flash-based storage systems

    Exploiting intrinsic flash properties to enhance modern storage systems

    Get PDF
    The longstanding goals of storage system design have been to provide simple abstractions for applications to efficiently access data while ensuring the data durability and security on a hardware device. The traditional storage system, which was designed for slow hard disk drive with little parallelism, does not fit for the new storage technologies such as the faster flash memory with high internal parallelism. The gap between the storage system software and flash device causes both resource inefficiency and sub-optimal performance. This dissertation focuses on the rethinking of the storage system design for flash memory with a holistic approach from the system level to the device level and revisits several critical aspects of the storage system design including the storage performance, performance isolation, energy-efficiency, and data security. The traditional storage system lacks full performance isolation between applications sharing the device because it does not make the software aware of the underlying flash properties and constraints. This dissertation proposes FlashBlox, a storage virtualization system that utilizes flash parallelism to provide hardware isolation between applications by assigning them on dedicated chips. FlashBlox reduces the tail latency of storage operations dramatically compared with the existing software-based isolation techniques while achieving uniform lifetime for the flash device. As the underlying flash device latency is reduced significantly compared to the conventional hard disk drive, the storage software overhead has become the major bottleneck. This dissertation presents FlashMap, a holistic flash-based storage stack that combines memory, storage and device-level indirections into a unified layer. By combining these layers, FlashMap reduces critical-path latency for accessing data in the flash device and improves DRAM caching efficiency significantly for flash management. The traditional storage software incurs energy-intensive storage operations due to the need for maintaining data durability and security for personal data, which has become a significant challenge for resource-constrained devices such as mobiles and wearables. This dissertation proposes WearDrive, a fast and energy-efficient storage system for wearables. WearDrive treats the battery-backed DRAM as non-volatile memory to store personal data and trades the connected phone’s battery for the wearable’s by performing large and energy-intensive tasks on the phone while performing small and energy-efficient tasks locally using battery-backed DRAM. WearDrive improves wearable’s battery life significantly with negligible impact to the phone’s battery life. The storage software which has been developed for decades is still vulnerable to malware attacks. For example, the encryption ransomware which is a malicious software that stealthily encrypts user files and demands a ransom to provide access to these files. Prior solutions such as ransomware detection and data backups have been proposed to defend against encryption ransomware. Unfortunately, by the time the ransomware is detected, some files already undergo encryption and the user is still required to pay a ransom to access those files. Furthermore, ransomware variants can obtain kernel privilege to terminate or destroy these software-based defense systems. This dissertation presents FlashGuard, a ransomware-tolerant SSD which has a firmware-level recovery system that allows effective data recovery from encryption ransomware. FlashGuard leverages the intrinsic flash properties to defend against the encryption ransomware and adds minimal overhead to regular storage operations.Ph.D

    Understanding and Improving the Performance of Read Operations Across the Storage Stack

    Get PDF
    We live in a data-driven era, large amounts of data are generated and collected every day. Storage systems are the backbone of this era, as they store and retrieve data. To cope with increasing data demands (e.g., diversity, scalability), storage systems are experiencing changes across the stack. As other computer systems, storage systems rely on layering and modularity, to allow rapid development. Unfortunately, this can hinder performance clarity and introduce degradations (e.g., tail latency), due to unexpected interactions between components of the stack. In this thesis, we first perform a study to understand the behavior across different layers of the storage stack. We focus on sequential read workloads, a common I/O pattern in distributed le systems (e.g., HDFS, GFS). We analyze the interaction between read workloads, local le systems (i.e., ext4), and storage media (i.e., SSDs). We perform the same experiment over different periods of time (e.g., le lifetime). We uncover 3 slowdowns, all of which occur in the lower layers. When combined, these slowdowns can degrade throughput by 30%. We find that increased parallelism on the local le system mitigates these slowdowns, showing the need for adaptability in storage stacks. Given the fact that performance instabilities can occur at any layer of the stack, it is important that upper-layer systems are able to react. We propose smart hedging, a novel technique to manage high-percentile (tail) latency variations in read operations. Smart hedging considers production challenges, such as massive scalability, heterogeneity, and ease of deployment and maintainability. Our technique establishes a dynamic threshold by tracking latencies on the client-side. If a read operation exceeds the threshold, a new hedged request is issued, in an exponential back-off manner. We implement our technique in HDFS and evaluate it on 70k servers in 3 datacenters. Our technique reduces average tail latency, without generating excessive system load

    TACKLING PERFORMANCE AND SECURITY ISSUES FOR CLOUD STORAGE SYSTEMS

    Get PDF
    Building data-intensive applications and emerging computing paradigm (e.g., Machine Learning (ML), Artificial Intelligence (AI), Internet of Things (IoT) in cloud computing environments is becoming a norm, given the many advantages in scalability, reliability, security and performance. However, under rapid changes in applications, system middleware and underlying storage device, service providers are facing new challenges to deliver performance and security isolation in the context of shared resources among multiple tenants. The gap between the decades-old storage abstraction and modern storage device keeps widening, calling for software/hardware co-designs to approach more effective performance and security protocols. This dissertation rethinks the storage subsystem from device-level to system-level and proposes new designs at different levels to tackle performance and security issues for cloud storage systems. In the first part, we present an event-based SSD (Solid State Drive) simulator that models modern protocols, firmware and storage backend in detail. The proposed simulator can capture the nuances of SSD internal states under various I/O workloads, which help researchers understand the impact of various SSD designs and workload characteristics on end-to-end performance. In the second part, we study the security challenges of shared in-storage computing infrastructures. Many cloud providers offer isolation at multiple levels to secure data and instance, however, security measures in emerging in-storage computing infrastructures are not studied. We first investigate the attacks that could be conducted by offloaded in-storage programs in a multi-tenancy cloud environment. To defend against these attacks, we build a lightweight Trusted Execution Environment, IceClave to enable security isolation between in-storage programs and internal flash management functions. We show that while enforcing security isolation in the SSD controller with minimal hardware cost, IceClave still keeps the performance benefit of in-storage computing by delivering up to 2.4x better performance than the conventional host-based trusted computing approach. In the third part, we investigate the performance interference problem caused by other tenants' I/O flows. We demonstrate that I/O resource sharing can often lead to performance degradation and instability. The block device abstraction fails to expose SSD parallelism and pass application requirements. To this end, we propose a software/hardware co-design to enforce performance isolation by bridging the semantic gap. Our design can significantly improve QoS (Quality of Service) by reducing throughput penalties and tail latency spikes. Lastly, we explore more effective I/O control to address contention in the storage software stack. We illustrate that the state-of-the-art resource control mechanism, Linux cgroups is insufficient for controlling I/O resources. Inappropriate cgroup configurations may even hurt the performance of co-located workloads under memory intensive scenarios. We add kernel support for limiting page cache usage per cgroup and achieving I/O proportionality

    RAIDX: RAID EXTENDED FOR HETEROGENEOUS ARRAYS

    Get PDF
    The computer hard drive market has diversified with the establishment of solid state disks (SSDs) as an alternative to magnetic hard disks (HDDs). Each hard drive technology has its advantages: the SSDs are faster than HDDs but the HDDs are cheaper. Our goal is to construct a parallel storage system with HDDs and SSDs such that the parallel system is as fast as the SSDs. Achieving this goal is challenging since the slow HDDs store more data and become bottlenecks, while the SSDs remain idle. RAIDX is a parallel storage system designed for disks of different speeds, capacities and technologies. The RAIDX hardware consists of an array of disks; the RAIDX software consists of data structures and algorithms that allow the disks to be viewed as a single storage unit that has capacity equal to the sum of the capacities of its disks, failure rate lower than the failure rate of its individual disks, and speeds close to that of its faster disks. RAIDX achieves its performance goals with the aid of its novel parallel data organization technique that allows storage data to be moved on the fly without impacting the upper level file system. We show that storage data accesses satisfy the locality of reference principle, whereby only a small fraction of storage data are accessed frequently. RAIDX has a monitoring program that identifies frequently accessed blocks and a migration program that moves frequently accessed blocks to faster disks. The faster disks are caches that store the solo copy of frequently accessed data. Experimental evaluation has shown that a HDD+SSD RAIDX array is as fast as an all-SSD array when the workload shows locality of reference

    Analyse des performances de stockage, en mémoire et sur les périphériques d'entrée/sortie, à partir d'une trace d'exécution

    Get PDF
    Le stockage des données est vital pour l’industrie informatique. Les supports de stockage doivent être rapides et fiables pour répondre aux demandes croissantes des entreprises. Les technologies de stockage peuvent être classifiées en deux catégories principales : stockage de masse et stockage en mémoire. Le stockage de masse permet de sauvegarder une grande quantité de données à long terme. Les données sont enregistrées localement sur des périphériques d’entrée/sortie, comme les disques durs (HDD) et les Solid-State Drive (SSD), ou en ligne sur des systèmes de stockage distribué. Le stockage en mémoire permet de garder temporairement les données nécessaires pour les programmes en cours d’exécution. La mémoire vive est caractérisée par sa rapidité d’accès, indispensable pour fournir rapidement les données à l’unité de calcul du processeur. Les systèmes d’exploitation utilisent plusieurs mécanismes pour gérer les périphériques de stockage, par exemple les ordonnanceurs de disque et les allocateurs de mémoire. Le temps de traitement d’une requête de stockage est affecté par l’interaction entre plusieurs soussystèmes, ce qui complique la tâche de débogage. Les outils existants, comme les outils d’étalonnage, permettent de donner une vague idée sur la performance globale du système, mais ne permettent pas d’identifier précisément les causes d’une mauvaise performance. L’analyse dynamique par trace d’exécution est très utile pour l’étude de performance des systèmes. Le traçage permet de collecter des données précises sur le fonctionnement du système, ce qui permet de détecter des problèmes de performance difficilement identifiables. L’objectif de cette thèse est de fournir un outil permettant d’analyser les performances de stockage, en mémoire et sur les périphériques d’entrée/sortie, en se basant sur les traces d’exécution. Les défis relevés par cet outil sont : collecter les données nécessaires à l’analyse depuis le noyau et les programmes en mode utilisateur, limiter le surcoût du traçage et la taille des traces générées, synchroniser les différentes traces, fournir des analyses multiniveau couvrant plusieurs aspects de la performance et enfin proposer des abstractions permettant aux utilisateurs de facilement comprendre les traces.----------ABSTRACT: Data storage is an essential resource for the computer industry. Storage devices must be fast and reliable to meet the growing demands of the data-driven economy. Storage technologies can be classified into two main categories: mass storage and main memory storage. Mass storage can store large amounts of data persistently. Data is saved locally on input/output devices, such as Hard Disk Drives (HDD) and Solid-State Drives (SSD), or remotely on distributed storage systems. Main memory storage temporarily holds the necessary data for running programs. Main memory is characterized by its high access speed, essential to quickly provide data to the Central Processing Unit (CPU). Operating systems use several mechanisms to manage storage devices, such as disk schedulers and memory allocators. The processing time of a storage request is affected by the interaction between several subsystems, which complicates the debugging task. Existing tools, such as benchmarking tools, provide a general idea of the overall system performance, but do not accurately identify the causes of poor performance. Dynamic analysis through execution tracing is a solution for the detailed runtime analysis of storage systems. Tracing collects precise data about the internal behavior of the system, which helps in detecting performance problems that are difficult to identify. The goal of this thesis is to provide a tool to analyze storage performance based on lowlevel trace events. The main challenges addressed by this tool are: collecting the required data using kernel and userspace tracing, limiting the overhead of tracing and the size of the generated traces, synchronizing the traces collected from different sources, providing multi-level analyses covering several aspects of storage performance, and lastly proposing abstractions allowing users to easily understand the traces. We carefully designed and inserted the instrumentation needed for the analyses. The tracepoints provide full visibility into the system and track the lifecycle of storage requests, from creation to processing. The Linux Trace Toolkit Next Generation (LTTng), a free and low-overhead tracer, is used for data collection. This tracer is characterized by its stability, and efficiency with highly parallel applications, thanks to the lock-free synchronization mechanisms used to update the content of the trace buffers. We also contributed to the creation of a patch that allows LTTng to capture the call stacks of userspace events

    Improving Storage with Stackable Extensions

    Get PDF
    Storage is a central part of computing. Driven by exponentially increasing content generation rate and a widening performance gap between memory and secondary storage, researchers are in the perennial quest to push for further innovation. This has resulted in novel ways to “squeeze” more capacity and performance out of current and emerging storage technology. Adding intelligence and leveraging new types of storage devices has opened the door to a whole new class of optimizations to save cost, improve performance, and reduce energy consumption. In this dissertation, we first develop, analyze, and evaluate three storage exten- sions. Our first extension tracks application access patterns and writes data in the way individual applications most commonly access it to benefit from the sequential throughput of disks. Our second extension uses a lower power flash device as a cache to save energy and turn off the disk during idle periods. Our third extension is designed to leverage the characteristics of both disks and solid state devices by placing data in the most appropriate device to improve performance and save power. In developing these systems, we learned that extending the storage stack is a complex process. Implementing new ideas incurs a prolonged and cumbersome de- velopment process and requires developers to have advanced knowledge of the entire system to ensure that extensions accomplish their goal without compromising data recoverability. Futhermore, storage administrators are often reluctant to deploy specific storage extensions without understanding how they interact with other ex- tensions and if the extension ultimately achieves the intended goal. We address these challenges by using a combination of approaches. First, we simplify the stor- age extension development process with system-level infrastructure that implements core functionality commonly needed for storage extension development. Second, we develop a formal theory to assist administrators deploy storage extensions while guaranteeing that the given high level goals are satisfied. There are, however, some cases for which our theory is inconclusive. For such scenarios we present an experi- mental methodology that allows administrators to pick an extension that performs best for a given workload. Our evaluation demostrates the benefits of both the infrastructure and the formal theory
    corecore