72 research outputs found

    Graph Embedded Nonparametric Mutual Information For Supervised Dimensionality Reduction

    Get PDF
    In this paper, we propose a novel algorithm for dimensionality reduction that uses as a criterion the mutual information (MI) between the transformed data and their cor- responding class labels. The MI is a powerful criterion that can be used as a proxy to the Bayes error rate. Further- more, recent quadratic nonparametric implementations of MI are computationally efficient and do not require any prior assumptions about the class densities. We show that the quadratic nonparametric MI can be formulated as a kernel objective in the graph embedding framework. Moreover, we propose its linear equivalent as a novel linear dimensionality reduction algorithm. The derived methods are compared against the state-of-the-art dimensionality reduction algorithms with various classifiers and on various benchmark and real-life datasets. The experimental results show that nonparametric MI as an optimization objective for dimensionality reduction gives comparable and in most of the cases better results compared with other dimensionality reduction methods

    Multi-system Biometric Authentication: Optimal Fusion and User-Specific Information

    Get PDF
    Verifying a person's identity claim by combining multiple biometric systems (fusion) is a promising solution to identity theft and automatic access control. This thesis contributes to the state-of-the-art of multimodal biometric fusion by improving the understanding of fusion and by enhancing fusion performance using information specific to a user. One problem to deal with at the score level fusion is to combine system outputs of different types. Two statistically sound representations of scores are probability and log-likelihood ratio (LLR). While they are equivalent in theory, LLR is much more useful in practice because its distribution can be approximated by a Gaussian distribution, which makes it useful to analyze the problem of fusion. Furthermore, its score statistics (mean and covariance) conditioned on the claimed user identity can be better exploited. Our first contribution is to estimate the fusion performance given the class-conditional score statistics and given a particular fusion operator/classifier. Thanks to the score statistics, we can predict fusion performance with reasonable accuracy, identify conditions which favor a particular fusion operator, study the joint phenomenon of combining system outputs with different degrees of strength and correlation and possibly correct the adverse effect of bias (due to the score-level mismatch between training and test sets) on fusion. While in practice the class-conditional Gaussian assumption is not always true, the estimated performance is found to be acceptable. Our second contribution is to exploit the user-specific prior knowledge by limiting the class-conditional Gaussian assumption to each user. We exploit this hypothesis in two strategies. In the first strategy, we combine a user-specific fusion classifier with a user-independent fusion classifier by means of two LLR scores, which are then weighted to obtain a single output. We show that combining both user-specific and user-independent LLR outputs always results in improved performance than using the better of the two. In the second strategy, we propose a statistic called the user-specific F-ratio, which measures the discriminative power of a given user based on the Gaussian assumption. Although similar class separability measures exist, e.g., the Fisher-ratio for a two-class problem and the d-prime statistic, F-ratio is more suitable because it is related to Equal Error Rate in a closed form. F-ratio is used in the following applications: a user-specific score normalization procedure, a user-specific criterion to rank users and a user-specific fusion operator that selectively considers a subset of systems for fusion. The resultant fusion operator leads to a statistically significantly increased performance with respect to the state-of-the-art fusion approaches. Even though the applications are different, the proposed methods share the following common advantages. Firstly, they are robust to deviation from the Gaussian assumption. Secondly, they are robust to few training data samples thanks to Bayesian adaptation. Finally, they consider both the client and impostor information simultaneously

    Recherche d'images par le contenu, analyse multirésolution et modèles de régression logistique

    Get PDF
    Cette thèse, présente l'ensemble de nos contributions relatives à la recherche d'images par le contenu à l'aide de l'analyse multirésolution ainsi qu'à la classification linéaire et nonlinéaire. Dans la première partie, nous proposons une méthode simple et rapide de recherche d'images par le contenu. Pour représenter les images couleurs, nous introduisons de nouveaux descripteurs de caractéristiques qui sont des histogrammes pondérés par le gradient multispectral. Afin de mesurer le degré de similarité entre deux images d'une façon rapide et efficace, nous utilisons une pseudo-métrique pondérée qui utilise la décomposition en ondelettes et la compression des histogrammes extraits des images. Les poids de la pseudo-métrique sont ajustés à l'aide du modèle classique de régression logistique afin d'améliorer sa capacité à discriminer et la précision de la recherche. Dans la deuxième partie, nous proposons un nouveau modèle bayésien de régression logistique fondé sur une méthode variationnelle. Une comparaison de ce nouveau modèle au modèle classique de régression logistique est effectuée dans le cadre de la recherche d'images. Nous illustrons par la suite que le modèle bayésien permet par rapport au modèle classique une amélioration notoire de la capacité à discriminer de la pseudo-métrique et de la précision de recherche. Dans la troisième partie, nous détaillons la dérivation du nouveau modèle bayésien de régression logistique fondé sur une méthode variationnelle et nous comparons ce modèle au modèle classique de régression logistique ainsi qu'à d'autres classificateurs linéaires présents dans la littérature. Nous comparons par la suite, notre méthode de recherche, utilisant le modèle bayésien de régression logistique, à d'autres méthodes de recherches déjà publiées. Dans la quatrième partie, nous introduisons la sélection des caractéristiques pour améliorer notre méthode de recherche utilisant le modèle introduit ci-dessus. En effet, la sélection des caractéristiques permet de donner automatiquement plus d'importance aux caractéristiques qui discriminent le plus et moins d'importance aux caractéristiques qui discriminent le moins. Finalement, dans la cinquième partie, nous proposons un nouveau modèle bayésien d'analyse discriminante logistique construit à l'aide de noyaux permettant ainsi une classification nonlinéaire flexible

    Sparse machine learning methods with applications in multivariate signal processing

    Get PDF
    This thesis details theoretical and empirical work that draws from two main subject areas: Machine Learning (ML) and Digital Signal Processing (DSP). A unified general framework is given for the application of sparse machine learning methods to multivariate signal processing. In particular, methods that enforce sparsity will be employed for reasons of computational efficiency, regularisation, and compressibility. The methods presented can be seen as modular building blocks that can be applied to a variety of applications. Application specific prior knowledge can be used in various ways, resulting in a flexible and powerful set of tools. The motivation for the methods is to be able to learn and generalise from a set of multivariate signals. In addition to testing on benchmark datasets, a series of empirical evaluations on real world datasets were carried out. These included: the classification of musical genre from polyphonic audio files; a study of how the sampling rate in a digital radar can be reduced through the use of Compressed Sensing (CS); analysis of human perception of different modulations of musical key from Electroencephalography (EEG) recordings; classification of genre of musical pieces to which a listener is attending from Magnetoencephalography (MEG) brain recordings. These applications demonstrate the efficacy of the framework and highlight interesting directions of future research

    Discriminant feature pursuit: from statistical learning to informative learning.

    Get PDF
    Lin Dahua.Thesis (M.Phil.)--Chinese University of Hong Kong, 2006.Includes bibliographical references (leaves 233-250).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.iiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- The Problem We are Facing --- p.1Chapter 1.2 --- Generative vs. Discriminative Models --- p.2Chapter 1.3 --- Statistical Feature Extraction: Success and Challenge --- p.3Chapter 1.4 --- Overview of Our Works --- p.5Chapter 1.4.1 --- New Linear Discriminant Methods: Generalized LDA Formulation and Performance-Driven Sub space Learning --- p.5Chapter 1.4.2 --- Coupled Learning Models: Coupled Space Learning and Inter Modality Recognition --- p.6Chapter 1.4.3 --- Informative Learning Approaches: Conditional Infomax Learning and Information Chan- nel Model --- p.6Chapter 1.5 --- Organization of the Thesis --- p.8Chapter I --- History and Background --- p.10Chapter 2 --- Statistical Pattern Recognition --- p.11Chapter 2.1 --- Patterns and Classifiers --- p.11Chapter 2.2 --- Bayes Theory --- p.12Chapter 2.3 --- Statistical Modeling --- p.14Chapter 2.3.1 --- Maximum Likelihood Estimation --- p.14Chapter 2.3.2 --- Gaussian Model --- p.15Chapter 2.3.3 --- Expectation-Maximization --- p.17Chapter 2.3.4 --- Finite Mixture Model --- p.18Chapter 2.3.5 --- A Nonparametric Technique: Parzen Windows --- p.21Chapter 3 --- Statistical Learning Theory --- p.24Chapter 3.1 --- Formulation of Learning Model --- p.24Chapter 3.1.1 --- Learning: Functional Estimation Model --- p.24Chapter 3.1.2 --- Representative Learning Problems --- p.25Chapter 3.1.3 --- Empirical Risk Minimization --- p.26Chapter 3.2 --- Consistency and Convergence of Learning --- p.27Chapter 3.2.1 --- Concept of Consistency --- p.27Chapter 3.2.2 --- The Key Theorem of Learning Theory --- p.28Chapter 3.2.3 --- VC Entropy --- p.29Chapter 3.2.4 --- Bounds on Convergence --- p.30Chapter 3.2.5 --- VC Dimension --- p.35Chapter 4 --- History of Statistical Feature Extraction --- p.38Chapter 4.1 --- Linear Feature Extraction --- p.38Chapter 4.1.1 --- Principal Component Analysis (PCA) --- p.38Chapter 4.1.2 --- Linear Discriminant Analysis (LDA) --- p.41Chapter 4.1.3 --- Other Linear Feature Extraction Methods --- p.46Chapter 4.1.4 --- Comparison of Different Methods --- p.48Chapter 4.2 --- Enhanced Models --- p.49Chapter 4.2.1 --- Stochastic Discrimination and Random Subspace --- p.49Chapter 4.2.2 --- Hierarchical Feature Extraction --- p.51Chapter 4.2.3 --- Multilinear Analysis and Tensor-based Representation --- p.52Chapter 4.3 --- Nonlinear Feature Extraction --- p.54Chapter 4.3.1 --- Kernelization --- p.54Chapter 4.3.2 --- Dimension reduction by Manifold Embedding --- p.56Chapter 5 --- Related Works in Feature Extraction --- p.59Chapter 5.1 --- Dimension Reduction --- p.59Chapter 5.1.1 --- Feature Selection --- p.60Chapter 5.1.2 --- Feature Extraction --- p.60Chapter 5.2 --- Kernel Learning --- p.61Chapter 5.2.1 --- Basic Concepts of Kernel --- p.61Chapter 5.2.2 --- The Reproducing Kernel Map --- p.62Chapter 5.2.3 --- The Mercer Kernel Map --- p.64Chapter 5.2.4 --- The Empirical Kernel Map --- p.65Chapter 5.2.5 --- Kernel Trick and Kernelized Feature Extraction --- p.66Chapter 5.3 --- Subspace Analysis --- p.68Chapter 5.3.1 --- Basis and Subspace --- p.68Chapter 5.3.2 --- Orthogonal Projection --- p.69Chapter 5.3.3 --- Orthonormal Basis --- p.70Chapter 5.3.4 --- Subspace Decomposition --- p.70Chapter 5.4 --- Principal Component Analysis --- p.73Chapter 5.4.1 --- PCA Formulation --- p.73Chapter 5.4.2 --- Solution to PCA --- p.75Chapter 5.4.3 --- Energy Structure of PCA --- p.76Chapter 5.4.4 --- Probabilistic Principal Component Analysis --- p.78Chapter 5.4.5 --- Kernel Principal Component Analysis --- p.81Chapter 5.5 --- Independent Component Analysis --- p.83Chapter 5.5.1 --- ICA Formulation --- p.83Chapter 5.5.2 --- Measurement of Statistical Independence --- p.84Chapter 5.6 --- Linear Discriminant Analysis --- p.85Chapter 5.6.1 --- Fisher's Linear Discriminant Analysis --- p.85Chapter 5.6.2 --- Improved Algorithms for Small Sample Size Problem . --- p.89Chapter 5.6.3 --- Kernel Discriminant Analysis --- p.92Chapter II --- Improvement in Linear Discriminant Analysis --- p.100Chapter 6 --- Generalized LDA --- p.101Chapter 6.1 --- Regularized LDA --- p.101Chapter 6.1.1 --- Generalized LDA Implementation Procedure --- p.101Chapter 6.1.2 --- Optimal Nonsingular Approximation --- p.103Chapter 6.1.3 --- Regularized LDA algorithm --- p.104Chapter 6.2 --- A Statistical View: When is LDA optimal? --- p.105Chapter 6.2.1 --- Two-class Gaussian Case --- p.106Chapter 6.2.2 --- Multi-class Cases --- p.107Chapter 6.3 --- Generalized LDA Formulation --- p.108Chapter 6.3.1 --- Mathematical Preparation --- p.108Chapter 6.3.2 --- Generalized Formulation --- p.110Chapter 7 --- Dynamic Feedback Generalized LDA --- p.112Chapter 7.1 --- Basic Principle --- p.112Chapter 7.2 --- Dynamic Feedback Framework --- p.113Chapter 7.2.1 --- Initialization: K-Nearest Construction --- p.113Chapter 7.2.2 --- Dynamic Procedure --- p.115Chapter 7.3 --- Experiments --- p.115Chapter 7.3.1 --- Performance in Training Stage --- p.116Chapter 7.3.2 --- Performance on Testing set --- p.118Chapter 8 --- Performance-Driven Subspace Learning --- p.119Chapter 8.1 --- Motivation and Principle --- p.119Chapter 8.2 --- Performance-Based Criteria --- p.121Chapter 8.2.1 --- The Verification Problem and Generalized Average Margin --- p.122Chapter 8.2.2 --- Performance Driven Criteria based on Generalized Average Margin --- p.123Chapter 8.3 --- Optimal Subspace Pursuit --- p.125Chapter 8.3.1 --- Optimal threshold --- p.125Chapter 8.3.2 --- Optimal projection matrix --- p.125Chapter 8.3.3 --- Overall procedure --- p.129Chapter 8.3.4 --- Discussion of the Algorithm --- p.129Chapter 8.4 --- Optimal Classifier Fusion --- p.130Chapter 8.5 --- Experiments --- p.131Chapter 8.5.1 --- Performance Measurement --- p.131Chapter 8.5.2 --- Experiment Setting --- p.131Chapter 8.5.3 --- Experiment Results --- p.133Chapter 8.5.4 --- Discussion --- p.139Chapter III --- Coupled Learning of Feature Transforms --- p.140Chapter 9 --- Coupled Space Learning --- p.141Chapter 9.1 --- Introduction --- p.142Chapter 9.1.1 --- What is Image Style Transform --- p.142Chapter 9.1.2 --- Overview of our Framework --- p.143Chapter 9.2 --- Coupled Space Learning --- p.143Chapter 9.2.1 --- Framework of Coupled Modelling --- p.143Chapter 9.2.2 --- Correlative Component Analysis --- p.145Chapter 9.2.3 --- Coupled Bidirectional Transform --- p.148Chapter 9.2.4 --- Procedure of Coupled Space Learning --- p.151Chapter 9.3 --- Generalization to Mixture Model --- p.152Chapter 9.3.1 --- Coupled Gaussian Mixture Model --- p.152Chapter 9.3.2 --- Optimization by EM Algorithm --- p.152Chapter 9.4 --- Integrated Framework for Image Style Transform --- p.154Chapter 9.5 --- Experiments --- p.156Chapter 9.5.1 --- Face Super-resolution --- p.156Chapter 9.5.2 --- Portrait Style Transforms --- p.157Chapter 10 --- Inter-Modality Recognition --- p.162Chapter 10.1 --- Introduction to the Inter-Modality Recognition Problem . . . --- p.163Chapter 10.1.1 --- What is Inter-Modality Recognition --- p.163Chapter 10.1.2 --- Overview of Our Feature Extraction Framework . . . . --- p.163Chapter 10.2 --- Common Discriminant Feature Extraction --- p.165Chapter 10.2.1 --- Formulation of the Learning Problem --- p.165Chapter 10.2.2 --- Matrix-Form of the Objective --- p.168Chapter 10.2.3 --- Solving the Linear Transforms --- p.169Chapter 10.3 --- Kernelized Common Discriminant Feature Extraction --- p.170Chapter 10.4 --- Multi-Mode Framework --- p.172Chapter 10.4.1 --- Multi-Mode Formulation --- p.172Chapter 10.4.2 --- Optimization Scheme --- p.174Chapter 10.5 --- Experiments --- p.176Chapter 10.5.1 --- Experiment Settings --- p.176Chapter 10.5.2 --- Experiment Results --- p.177Chapter IV --- A New Perspective: Informative Learning --- p.180Chapter 11 --- Toward Information Theory --- p.181Chapter 11.1 --- Entropy and Mutual Information --- p.181Chapter 11.1.1 --- Entropy --- p.182Chapter 11.1.2 --- Relative Entropy (Kullback Leibler Divergence) --- p.184Chapter 11.2 --- Mutual Information --- p.184Chapter 11.2.1 --- Definition of Mutual Information --- p.184Chapter 11.2.2 --- Chain rules --- p.186Chapter 11.2.3 --- Information in Data Processing --- p.188Chapter 11.3 --- Differential Entropy --- p.189Chapter 11.3.1 --- Differential Entropy of Continuous Random Variable . --- p.189Chapter 11.3.2 --- Mutual Information of Continuous Random Variable . --- p.190Chapter 12 --- Conditional Infomax Learning --- p.191Chapter 12.1 --- An Overview --- p.192Chapter 12.2 --- Conditional Informative Feature Extraction --- p.193Chapter 12.2.1 --- Problem Formulation and Features --- p.193Chapter 12.2.2 --- The Information Maximization Principle --- p.194Chapter 12.2.3 --- The Information Decomposition and the Conditional Objective --- p.195Chapter 12.3 --- The Efficient Optimization --- p.197Chapter 12.3.1 --- Discrete Approximation Based on AEP --- p.197Chapter 12.3.2 --- Analysis of Terms and Their Derivatives --- p.198Chapter 12.3.3 --- Local Active Region Method --- p.200Chapter 12.4 --- Bayesian Feature Fusion with Sparse Prior --- p.201Chapter 12.5 --- The Integrated Framework for Feature Learning --- p.202Chapter 12.6 --- Experiments --- p.203Chapter 12.6.1 --- A Toy Problem --- p.203Chapter 12.6.2 --- Face Recognition --- p.204Chapter 13 --- Channel-based Maximum Effective Information --- p.209Chapter 13.1 --- Motivation and Overview --- p.209Chapter 13.2 --- Maximizing Effective Information --- p.211Chapter 13.2.1 --- Relation between Mutual Information and Classification --- p.211Chapter 13.2.2 --- Linear Projection and Metric --- p.212Chapter 13.2.3 --- Channel Model and Effective Information --- p.213Chapter 13.2.4 --- Parzen Window Approximation --- p.216Chapter 13.3 --- Parameter Optimization on Grassmann Manifold --- p.217Chapter 13.3.1 --- Grassmann Manifold --- p.217Chapter 13.3.2 --- Conjugate Gradient Optimization on Grassmann Manifold --- p.219Chapter 13.3.3 --- Computation of Gradient --- p.221Chapter 13.4 --- Experiments --- p.222Chapter 13.4.1 --- A Toy Problem --- p.222Chapter 13.4.2 --- Face Recognition --- p.223Chapter 14 --- Conclusion --- p.23

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    A novel approach for multimodal graph dimensionality reduction

    No full text
    This thesis deals with the problem of multimodal dimensionality reduction (DR), which arises when the input objects, to be mapped on a low-dimensional space, consist of multiple vectorial representations, instead of a single one. Herein, the problem is addressed in two alternative manners. One is based on the traditional notion of modality fusion, but using a novel approach to determine the fusion weights. In order to optimally fuse the modalities, the known graph embedding DR framework is extended to multiple modalities by considering a weighted sum of the involved affinity matrices. The weights of the sum are automatically calculated by minimizing an introduced notion of inconsistency of the resulting multimodal affinity matrix. The other manner for dealing with the problem is an approach to consider all modalities simultaneously, without fusing them, which has the advantage of minimal information loss due to fusion. In order to avoid fusion, the problem is viewed as a multi-objective optimization problem. The multiple objective functions are defined based on graph representations of the data, so that their individual minimization leads to dimensionality reduction for each modality separately. The aim is to combine the multiple modalities without the need to assign importance weights to them, or at least postpone such an assignment as a last step. The proposed approaches were experimentally tested in mapping multimedia data on low-dimensional spaces for purposes of visualization, classification and clustering. The no-fusion approach, namely Multi-objective DR, was able to discover mappings revealing the structure of all modalities simultaneously, which cannot be discovered by weight-based fusion methods. However, it results in a set of optimal trade-offs, from which one needs to be selected, which is not trivial. The optimal-fusion approach, namely Multimodal Graph Embedding DR, is able to easily extend unimodal DR methods to multiple modalities, but depends on the limitations of the unimodal DR method used. Both the no-fusion and the optimal-fusion approaches were compared to state-of-the-art multimodal dimensionality reduction methods and the comparison showed performance improvement in visualization, classification and clustering tasks. The proposed approaches were also evaluated for different types of problems and data, in two diverse application fields, a visual-accessibility-enhanced search engine and a visualization tool for mobile network security data. The results verified their applicability in different domains and suggested promising directions for future advancements.Open Acces

    Algorithms for Multiclass Classification and Regularized Regression

    Get PDF

    Algorithms for Multiclass Classification and Regularized Regression

    Get PDF

    Untangling hotel industry’s inefficiency: An SFA approach applied to a renowned Portuguese hotel chain

    Get PDF
    The present paper explores the technical efficiency of four hotels from Teixeira Duarte Group - a renowned Portuguese hotel chain. An efficiency ranking is established from these four hotel units located in Portugal using Stochastic Frontier Analysis. This methodology allows to discriminate between measurement error and systematic inefficiencies in the estimation process enabling to investigate the main inefficiency causes. Several suggestions concerning efficiency improvement are undertaken for each hotel studied.info:eu-repo/semantics/publishedVersio
    • …
    corecore