9 research outputs found

    Channel parameter tuning in a hybrid Wi-Fi-Dynamic Spectrum Access Wireless Mesh Network

    Get PDF
    This work addresses Channel Assignment in a multi-radio multi-channel (MRMC) Wireless Mesh Network (WMN) using both Wi-Fi and Dynamic Spectrum Access (DSA) spectrum bands and standards. This scenario poses new challenges because nodes are spread out geographically so may have differing allowed channels and experience different levels of external interference in different channels. A solution must meet two conflicting requirements simultaneously: 1) avoid or minimise interference within the network and from external interference sources, and 2) maintain connectivity within the network. These two requirements must be met while staying within the link constraints and the radio interface constraints, such as only assigning as many channels to a node as it has radios. This work's original contribution to the field is a unified framework for channel optimisation and assignment in a WMN that uses both DSA and traditional Wi-Fi channels for interconnectivity. This contribution is realised by providing and analysing the performance of near-optimal Channel Assignment (CA) solutions using metaheuristic algorithms for the MRMC WMNs using DSA bands. We have created a simulation framework for evaluating the algorithms. The performance of Simulated Annealing, Genetic Algorithm, Differential Evolution, and Particle Swarm Optimisation algorithms have been analysed and compared for the CA optimisation problem. We introduce a novel algorithm, used alongside the metaheuristic optimisation algorithms, to generate feasible candidate CA solutions. Unlike previous studies, this sensing and CA work takes into account the requirement to use a Geolocation Spectrum Database (GLSD) to get the allowed channels, in addition to using spectrum sensing to identify and estimate the cumulative severity of both internal and external interference sources. External interference may be caused by other secondary users (SUs) in the vicinity or by primary transmitters of the DSA band whose emissions leak into adjacent channels, next-toadjacent, or even into further channels. We use signal-to-interference-plus-noise ratio (SINR) as the optimisation objective. This incorporates any possible source or type of interference and makes our method agnostic to the protocol or technology of the interfering devices while ensuring that the received signal level is high enough for connectivity to be maintained on as many links as possible. To support our assertion that SINR is a reasonable criterion on which to base the optimisation, we have carried out extensive outdoor measurements in both line-of-sight and wooded conditions in the television white space (TVWS) DSA band and the 5 GHz Wi-Fi band. These measurements show that SINR is useful as a performance measure, especially when the interference experienced on a link is high. Our statistical analysis shows that SINR effectively differentiates the performance of different channels and that SINR is well correlated with throughput and is thus a good predictor of end-user experience, despite varying conditions. We also identify and analyse the idle times created by Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) contention-based Medium Access Control (MAC) operations and propose the use of these idle times for spectrum sensing to measure the SINR on possible channels. This means we can perform spectrum sensing with zero spectrum sensing delay experienced by the end user. Unlike previous work, this spectrum sensing is transparent and can be performed without causing any disruption to the normal data transmission of the network. We conduct Markov chain analysis to find the expected length of time of a sensing window. We also derive an efficient minimum variance unbiased estimator of the interference plus noise and show how the SINR can be found using this estimate. Our estimation is more granular, accurate, and appropriate to the problem of Secondary User (SU)-SU coexistence than the binary hypothesis testing methods that are most common in the literature. Furthermore, we construct confidence intervals based on the probability density function derived for the observations. This leads to finding and showing the relationships between the number of sampling windows and sampling time, the interference power, and the achievable confidence interval width. While our results coincide with (and thus are confirmed by) some key previous recommendations, ours are more precise, granular, and accurate and allow for application to a wider range of operating conditions. Finally, we present alterations to the IEEE 802.11k protocol to enable the reporting of spectrum sensing results to the fusion or gateway node and algorithms for distributing the Channel Assignment once computed. We analyse the convergence rate of the proposed procedures and find that high network availability can be maintained despite the temporary loss of connectivity caused by the channel switching procedure. This dissertation consolidates the different activities required to improve the channel parameter settings of a multi-radio multi-channel DSA-WMN. The work facilitates the extension of Internet connectivity to the unconnected or unreliably connected in rural or peri-urban areas in a more cost-effective way, enabling more meaningful and affordable access technologies. It also empowers smaller players to construct better community networks for sharing local content. This technology can have knock-on effects of improved socio-economic conditions for the communities that use it

    Enabling emergent configurations in the industrial internet of things for oil and gas explorations : a survey

    Get PDF
    Abstract: Several heterogeneous, intelligent, and distributed devices can be connected to interact with one another over the Internet in what is termed internet of things (IoT). Also, the concept of IoT can be exploited in the industrial environment for enhancing the production of goods and services and for mitigating the risk of disaster occurrences. This application of IoT for enhancing industrial production is known as industrial IoT (IIoT). Emergent configuration (EC) is a technology that can be adopted to enhance the operation and collaboration of IoT connected devices in order to improve the efficiency of the connected IoT systems for maximum user satisfaction. To meet user goals, the connected devices are required to cooperate with one another in an adaptive, interoperable, and homogeneous manner. In this paper, a survey of the concept of IoT is presented in addition to a review of IIoT systems. The application of ubiquitous computing-aided software define networking (SDN)-based EC architecture is propounded for enhancing the throughput of oil and gas production in the maritime ecosystems by managing the exploration process especially in emergency situations that involve anthropogenic oil and gas spillages

    Fixed-wing drones for communication networks

    Get PDF
    In the last decade, drones became frequently used to provide eye-in-the-sky overview in the outdoor environment. Their main advantage compared to the other types of robots is that they can fly above obstacles and rough terrains and they can quickly cover large areas. These properties also open a new application; drones could provide a multi-hop, line of sight communication for groups of ground users. The aim of this thesis is to develop a drone team that will establish wireless ad-hoc network between users on the ground and distributively adapt links and spatial arrangement to the requirements and motion of the ground users. For this application, we use fixed wing drones. Such platforms can be easily and quickly deployed. Fixed wing drones have higher forward speed and higher battery life than hovering platforms. On the other hand, fixed wing drones have unicycle dynamics with constrained forward speed which makes them unable to hover or perform sharp turns. The first challenge consists in bridging unicycle dynamics of the fixed wing drones. Some control strategies have been proposed and validated in simulations using the average distance between the target and the drone as a performance metric. However, besides the distance metric, energy expenditure of the flight also plays an important role in assessing the overall performance of the flight. We propose a new methodology that introduces a new metric (energy expenditure), we compare existing methods on a large set of target motion patterns and present a comparison between the simulation and field experiments on proposed target motion patterns. The second challenge consists in developing a formation control algorithm that will allow fixed wing robots to provide a wide area coverage and to relay data in a wireless ad-hoc network. In such applications fixed wing drones have to be able to regulate an inter-drone distance. Their reduced maneuverability presents the main challenge to design a formation algorithm that will regulate an inter-drone distance. To address this challenge, we present a distributed control strategy that relies only on local information. Each drone has its own virtual agent, it follows the virtual agent by performing previously evaluated and selected target tracking strategy, and flocking interaction rules are implemented between virtual agents. It is shown in simulation and in field experiments with a team of fixed wing drones that using this distributed formation algorithm, drones can cover an area by creating an equilateral triangular lattice and regulate communication link quality between neighboring drones. The third challenge consists in allowing connectivity between independently moving ground users using fixed wing drone team. We design two distributed control algorithms that change drones' spatial arrangement and interaction topology to maintain the connectivity. We propose a potential field based strategy which adapts distance between drones to shrink and expand the fixed wing drones' formation. In second approach, market-based adaptation, drones distributively delete interaction links to expand the formation graph to a tree graph. In simulations and field experiments we show that our proposed strategies successfully maintain independently moving ground users connected. Overall, this thesis presents synthesis of distributed algorithms for fixed wing drones to establish and maintain wireless ad-hoc communication networks

    Cooperative Resource Allocation in 6G Proximity Networks for Robotic Swarms

    Get PDF

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms
    corecore