3,476 research outputs found

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    Extending Dylan's type system for better type inference and error detection

    Get PDF

    Polygraph: Automatically generating signatures for polymorphic worms

    Get PDF
    It is widely believed that content-signature-based intrusion detection systems (IDSes) are easily evaded by polymorphic worms, which vary their payload on every infection attempt. In this paper, we present Polygraph, a signature generation system that successfully produces signatures that match polymorphic worms. Polygraph generates signatures that consist of multiple disjoint content sub-strings. In doing so, Polygraph leverages our insight that for a real-world exploit to function properly, multiple invariant substrings must often be present in all variants of a payload; these substrings typically correspond to protocol framing, return addresses, and in some cases, poorly obfuscated code. We contribute a definition of the polymorphic signature generation problem; propose classes of signature suited for matching polymorphic worm payloads; and present algorithms for automatic generation of signatures in these classes. Our evaluation of these algorithms on a range of polymorphic worms demonstrates that Polygraph produces signatures for polymorphic worms that exhibit low false negatives and false positives. Ā© 2005 IEEE

    Static Type Checking for the Q Functional Language in Prolog

    Get PDF
    We describe an application of Prolog: a type checking tool for the Q functional language. Q is a terse vector processing language, a descendant of APL, which is getting more and more popular, especially in financial applications. Q is a dynamically typed language, much like Prolog. Extending Q with static typing improves both the readability of programs and programmer productivity, as type errors are discovered by the tool at compile time, rather than through debugging the program execution. We designed a type description syntax for Q and implemented a parser for both the Q language and its type extension. We then implemented a type checking algorithm using constraints. As most built-in function names of Q are overloaded, i.e. their meaning depends on the argument types, a quite complex system of constraints had to be implemented. Prolog proved to be an ideal implementation language for the task at hand. We used Definite Clause Grammars for parsing and Constraint Handling Rules for the type checking algorithm. In the paper we describe the main problems solved and the experiences gained in the development of the type checking tool

    A Systematic Aspect-Oriented Refactoring and Testing Strategy, and its Application to JHotDraw

    Full text link
    Aspect oriented programming aims at achieving better modularization for a system's crosscutting concerns in order to improve its key quality attributes, such as evolvability and reusability. Consequently, the adoption of aspect-oriented techniques in existing (legacy) software systems is of interest to remediate software aging. The refactoring of existing systems to employ aspect-orientation will be considerably eased by a systematic approach that will ensure a safe and consistent migration. In this paper, we propose a refactoring and testing strategy that supports such an approach and consider issues of behavior conservation and (incremental) integration of the aspect-oriented solution with the original system. The strategy is applied to the JHotDraw open source project and illustrated on a group of selected concerns. Finally, we abstract from the case study and present a number of generic refactorings which contribute to an incremental aspect-oriented refactoring process and associate particular types of crosscutting concerns to the model and features of the employed aspect language. The contributions of this paper are both in the area of supporting migration towards aspect-oriented solutions and supporting the development of aspect languages that are better suited for such migrations.Comment: 25 page
    • ā€¦
    corecore