20 research outputs found

    Optimal non-perfect uniform secret sharing schemes

    Get PDF
    A secret sharing scheme is non-perfect if some subsets of participants that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes. To this end, we extend the known connections between polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information that every subset of participants obtains about the secret value. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, the ones whose values depend only on the number of participants, generalize the threshold access structures. Our main result is to determine the optimal information ratio of the uniform access functions. Moreover, we present a construction of linear secret sharing schemes with optimal information ratio for the rational uniform access functions.Peer ReviewedPostprint (author's final draft

    On the information ratio of non-perfect secret sharing schemes

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00453-016-0217-9A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values.Peer ReviewedPostprint (author's final draft

    A Note on Non-Perfect Secret Sharing

    Get PDF
    By using a recently introduced framework for non-perfect secret sharing, several known results on perfect secret sharing are generalized to non-perfect secret sharing schemes with constant increment, in which the amount of information provided by adding a single share to a set is either zero or some constant value. Specifically, we discuss ideal secret sharing schemes, constructions of efficient linear secret sharing schemes, and the search for lower bounds on the length of the shares. Similarly to perfect secret sharing, matroids and polymatroids are very useful to analyze these questions

    On the Information Ratio of Non-Perfect Secret Sharing Schemes

    Get PDF
    A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values

    Society-oriented cryptographic techniques for information protection

    Get PDF
    Groups play an important role in our modern world. They are more reliable and more trustworthy than individuals. This is the reason why, in an organisation, crucial decisions are left to a group of people rather than to an individual. Cryptography supports group activity by offering a wide range of cryptographic operations which can only be successfully executed if a well-defined group of people agrees to co-operate. This thesis looks at two fundamental cryptographic tools that are useful for the management of secret information. The first part looks in detail at secret sharing schemes. The second part focuses on society-oriented cryptographic systems, which are the application of secret sharing schemes in cryptography. The outline of thesis is as follows

    Local Bounds for the Optimal Information Ratio of Secret Sharing Schemes

    Get PDF
    The information ratio of a secret sharing scheme Σ\Sigma is the ratio between the length of the largest share and the length of the secret, and it is denoted by σ(Σ)\sigma(\Sigma). The optimal information ratio of an access structure Γ\Gamma is the infimum of σ(Σ)\sigma(\Sigma) among all schemes Σ\Sigma with access structure Γ\Gamma, and it is denoted by σ(Γ)\sigma(\Gamma). The main result of this work is that for every two access structures Γ\Gamma and Γ2˘7\Gamma\u27, σ(Γ)σ(Γ2˘7)ΓΓ2˘7ΓΓ2˘7|\sigma(\Gamma)-\sigma(\Gamma\u27)|\leq |\Gamma\cup\Gamma\u27|-|\Gamma\cap\Gamma\u27|. We prove it constructively. Given any secret sharing scheme Σ\Sigma for Γ\Gamma, we present a method to construct a secret sharing scheme Σ2˘7\Sigma\u27 for Γ2˘7\Gamma\u27 that satisfies that σ(Σ2˘7)σ(Σ)+ΓΓ2˘7ΓΓ2˘7\sigma(\Sigma\u27)\leq \sigma(\Sigma)+|\Gamma\cup\Gamma\u27|-|\Gamma\cap\Gamma\u27|. As a consequence of this result, we see that \emph{close} access structures admit secret sharing schemes with similar information ratio. We show that this property is also true for particular classes of secret sharing schemes and models of computation, like the family of linear secret sharing schemes, span programs, Boolean formulas and circuits. In order to understand this property, we also study the limitations of the techniques for finding lower bounds on the information ratio and other complexity measures. We analyze the behavior of these bounds when we add or delete subsets from an access structure

    On Abelian and Homomorphic Secret Sharing Schemes

    Get PDF
    Abelian secret sharing schemes (SSS) are generalization of multi-linear SSS and similar to them, abelian schemes are homomorphic. There are numerous results on linear and multi-linear SSSs in the literature and a few ones on homomorphic SSSs too. Nevertheless, the abelian schemes have not taken that much attention. We present three main results on abelian and homomorphic SSSs in this paper: (1) abelian schemes are more powerful than multi-linear schemes (we achieve a constant factor improvement), (2) the information ratio of dual access structures are the same for the class of abelian schemes, and (3) every ideal homomorphic scheme can be transformed into an ideal multi-linear scheme with the same access structure. Our results on abelian and homomorphic SSSs have been motivated by the following concerns and questions. All known linear rank inequities have been derived using the so-called common information property of random variables [Dougherty, Freiling and Zeger, 2009], and it is an open problem that if common information is complete for deriving all such inequalities (Q1). The common information property has also been used in linear programming to find lower bounds for the information ratio of access structures [Farràs, Kaced, Molleví and Padró, 2018] and it is an open problem that if the method is complete for finding the optimal information ratio for the class of multi-linear schemes (Q2). Also, it was realized by the latter authors that the obtained lower bound does not have a good behavior with respect to duality and it is an open problem that if this behavior is inherent to their method (Q3). Our first result provides a negative answer to Q2. Even though, we are not able to completely answer Q1 and Q3, we have some observations about them

    Partial Secret Sharing Schemes

    Get PDF
    The information ratio of an access structure is an important parameter for quantifying the efficiency of the best secret sharing scheme (SSS) realizing it. The most common security notion is perfect security. The following relaxations, in increasing level of security, have been presented in the literature: quasi-perfect, almost-perfect and statistical. Understanding the power of relaxing the correctness and privacy requirements in the efficiency of SSSs is a long-standing open problem. In this article, we introduce and study an extremely relaxed security notion, called partial security, for which it is only required that any qualified set gains strictly more information about the secret than any unqualified one. We refer to this gap as the nominal capacity. We quantify the efficiency of such schemes using a parameter called partial information ratio. It is defined to be the same as the (standard) information ratio, except that we divide the largest share entropy by nominal capacity instead of the secret entropy. Despite this modification, partial security turns out weaker than the weakest mentioned non-perfect security notion, i.e., quasi-perfect security. We present three main results in this paper. First, we prove that partial and perfect information ratios coincide for the class of linear SSSs. Consequently, for this class, information ratio is invariant with respect to all security notions. Second, by viewing a partial SSS as a wiretap channel, we prove that for the general (i.e., non-linear) class of SSSs, partial and statistical information ratios are equal. Consequently, for this class, information ratio is invariant with respect to all non-perfect security notions. Third, we show that partial and almost-perfect information ratios do not coincide for the class of mixed-linear schemes (i.e., schemes constructed by combining linear schemes with different underlying finite fields). Our first result strengthens the previous decomposition theorems for constructing perfect linear schemes. Our second result leads to a very strong decomposition theorem for constructing general (i.e., non-linear) statistical schemes. Our third result provides a rare example of the effect of imperfection on the efficiency of SSSs for a certain class of schemes
    corecore