26,299 research outputs found

    Deciding regular grammar logics with converse through first-order logic

    Full text link
    We provide a simple translation of the satisfiability problem for regular grammar logics with converse into GF2, which is the intersection of the guarded fragment and the 2-variable fragment of first-order logic. This translation is theoretically interesting because it translates modal logics with certain frame conditions into first-order logic, without explicitly expressing the frame conditions. A consequence of the translation is that the general satisfiability problem for regular grammar logics with converse is in EXPTIME. This extends a previous result of the first author for grammar logics without converse. Using the same method, we show how some other modal logics can be naturally translated into GF2, including nominal tense logics and intuitionistic logic. In our view, the results in this paper show that the natural first-order fragment corresponding to regular grammar logics is simply GF2 without extra machinery such as fixed point-operators.Comment: 34 page

    Parametrized Stochastic Grammars for RNA Secondary Structure Prediction

    Full text link
    We propose a two-level stochastic context-free grammar (SCFG) architecture for parametrized stochastic modeling of a family of RNA sequences, including their secondary structure. A stochastic model of this type can be used for maximum a posteriori estimation of the secondary structure of any new sequence in the family. The proposed SCFG architecture models RNA subsequences comprising paired bases as stochastically weighted Dyck-language words, i.e., as weighted balanced-parenthesis expressions. The length of each run of unpaired bases, forming a loop or a bulge, is taken to have a phase-type distribution: that of the hitting time in a finite-state Markov chain. Without loss of generality, each such Markov chain can be taken to have a bounded complexity. The scheme yields an overall family SCFG with a manageable number of parameters.Comment: 5 pages, submitted to the 2007 Information Theory and Applications Workshop (ITA 2007

    On the Expressive Power of 2-Stack Visibly Pushdown Automata

    Full text link
    Visibly pushdown automata are input-driven pushdown automata that recognize some non-regular context-free languages while preserving the nice closure and decidability properties of finite automata. Visibly pushdown automata with multiple stacks have been considered recently by La Torre, Madhusudan, and Parlato, who exploit the concept of visibility further to obtain a rich automata class that can even express properties beyond the class of context-free languages. At the same time, their automata are closed under boolean operations, have a decidable emptiness and inclusion problem, and enjoy a logical characterization in terms of a monadic second-order logic over words with an additional nesting structure. These results require a restricted version of visibly pushdown automata with multiple stacks whose behavior can be split up into a fixed number of phases. In this paper, we consider 2-stack visibly pushdown automata (i.e., visibly pushdown automata with two stacks) in their unrestricted form. We show that they are expressively equivalent to the existential fragment of monadic second-order logic. Furthermore, it turns out that monadic second-order quantifier alternation forms an infinite hierarchy wrt words with multiple nestings. Combining these results, we conclude that 2-stack visibly pushdown automata are not closed under complementation. Finally, we discuss the expressive power of B\"{u}chi 2-stack visibly pushdown automata running on infinite (nested) words. Extending the logic by an infinity quantifier, we can likewise establish equivalence to existential monadic second-order logic

    Regularity Preserving but not Reflecting Encodings

    Full text link
    Encodings, that is, injective functions from words to words, have been studied extensively in several settings. In computability theory the notion of encoding is crucial for defining computability on arbitrary domains, as well as for comparing the power of models of computation. In language theory much attention has been devoted to regularity preserving functions. A natural question arising in these contexts is: Is there a bijective encoding such that its image function preserves regularity of languages, but its pre-image function does not? Our main result answers this question in the affirmative: For every countable class C of languages there exists a bijective encoding f such that for every language L in C its image f[L] is regular. Our construction of such encodings has several noteworthy consequences. Firstly, anomalies arise when models of computation are compared with respect to a known concept of implementation that is based on encodings which are not required to be computable: Every countable decision model can be implemented, in this sense, by finite-state automata, even via bijective encodings. Hence deterministic finite-state automata would be equally powerful as Turing machine deciders. A second consequence concerns the recognizability of sets of natural numbers via number representations and finite automata. A set of numbers is said to be recognizable with respect to a representation if an automaton accepts the language of representations. Our result entails that there is one number representation with respect to which every recursive set is recognizable

    The Determinacy of Context-Free Games

    Get PDF
    We prove that the determinacy of Gale-Stewart games whose winning sets are accepted by real-time 1-counter B\"uchi automata is equivalent to the determinacy of (effective) analytic Gale-Stewart games which is known to be a large cardinal assumption. We show also that the determinacy of Wadge games between two players in charge of omega-languages accepted by 1-counter B\"uchi automata is equivalent to the (effective) analytic Wadge determinacy. Using some results of set theory we prove that one can effectively construct a 1-counter B\"uchi automaton A and a B\"uchi automaton B such that: (1) There exists a model of ZFC in which Player 2 has a winning strategy in the Wadge game W(L(A), L(B)); (2) There exists a model of ZFC in which the Wadge game W(L(A), L(B)) is not determined. Moreover these are the only two possibilities, i.e. there are no models of ZFC in which Player 1 has a winning strategy in the Wadge game W(L(A), L(B)).Comment: To appear in the Proceedings of the 29 th International Symposium on Theoretical Aspects of Computer Science, STACS 201

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models
    corecore