9,478 research outputs found

    Interpretable Categorization of Heterogeneous Time Series Data

    Get PDF
    Understanding heterogeneous multivariate time series data is important in many applications ranging from smart homes to aviation. Learning models of heterogeneous multivariate time series that are also human-interpretable is challenging and not adequately addressed by the existing literature. We propose grammar-based decision trees (GBDTs) and an algorithm for learning them. GBDTs extend decision trees with a grammar framework. Logical expressions derived from a context-free grammar are used for branching in place of simple thresholds on attributes. The added expressivity enables support for a wide range of data types while retaining the interpretability of decision trees. In particular, when a grammar based on temporal logic is used, we show that GBDTs can be used for the interpretable classi cation of high-dimensional and heterogeneous time series data. Furthermore, we show how GBDTs can also be used for categorization, which is a combination of clustering and generating interpretable explanations for each cluster. We apply GBDTs to analyze the classic Australian Sign Language dataset as well as data on near mid-air collisions (NMACs). The NMAC data comes from aircraft simulations used in the development of the next-generation Airborne Collision Avoidance System (ACAS X).Comment: 9 pages, 5 figures, 2 tables, SIAM International Conference on Data Mining (SDM) 201

    Mining Predictive Patterns and Extension to Multivariate Temporal Data

    Get PDF
    An important goal of knowledge discovery is the search for patterns in the data that can help explaining its underlying structure. To be practically useful, the discovered patterns should be novel (unexpected) and easy to understand by humans. In this thesis, we study the problem of mining patterns (defining subpopulations of data instances) that are important for predicting and explaining a specific outcome variable. An example is the task of identifying groups of patients that respond better to a certain treatment than the rest of the patients. We propose and present efficient methods for mining predictive patterns for both atemporal and temporal (time series) data. Our first method relies on frequent pattern mining to explore the search space. It applies a novel evaluation technique for extracting a small set of frequent patterns that are highly predictive and have low redundancy. We show the benefits of this method on several synthetic and public datasets. Our temporal pattern mining method works on complex multivariate temporal data, such as electronic health records, for the event detection task. It first converts time series into time-interval sequences of temporal abstractions and then mines temporal patterns backwards in time, starting from patterns related to the most recent observations. We show the benefits of our temporal pattern mining method on two real-world clinical tasks

    DPVis: Visual Analytics with Hidden Markov Models for Disease Progression Pathways

    Full text link
    Clinical researchers use disease progression models to understand patient status and characterize progression patterns from longitudinal health records. One approach for disease progression modeling is to describe patient status using a small number of states that represent distinctive distributions over a set of observed measures. Hidden Markov models (HMMs) and its variants are a class of models that both discover these states and make inferences of health states for patients. Despite the advantages of using the algorithms for discovering interesting patterns, it still remains challenging for medical experts to interpret model outputs, understand complex modeling parameters, and clinically make sense of the patterns. To tackle these problems, we conducted a design study with clinical scientists, statisticians, and visualization experts, with the goal to investigate disease progression pathways of chronic diseases, namely type 1 diabetes (T1D), Huntington's disease, Parkinson's disease, and chronic obstructive pulmonary disease (COPD). As a result, we introduce DPVis which seamlessly integrates model parameters and outcomes of HMMs into interpretable and interactive visualizations. In this study, we demonstrate that DPVis is successful in evaluating disease progression models, visually summarizing disease states, interactively exploring disease progression patterns, and building, analyzing, and comparing clinically relevant patient subgroups.Comment: to appear at IEEE Transactions on Visualization and Computer Graphic

    Semi-Supervised Time Point Clustering for Multivariate Time Series

    Get PDF

    Semi-Supervised Time Point Clustering for Multivariate Time Series

    Get PDF
    corecore