1,023 research outputs found

    Can machines sense irony? : exploring automatic irony detection on social media

    Get PDF

    Knowledge Modelling and Learning through Cognitive Networks

    Get PDF
    One of the most promising developments in modelling knowledge is cognitive network science, which aims to investigate cognitive phenomena driven by the networked, associative organization of knowledge. For example, investigating the structure of semantic memory via semantic networks has illuminated how memory recall patterns influence phenomena such as creativity, memory search, learning, and more generally, knowledge acquisition, exploration, and exploitation. In parallel, neural network models for artificial intelligence (AI) are also becoming more widespread as inferential models for understanding which features drive language-related phenomena such as meaning reconstruction, stance detection, and emotional profiling. Whereas cognitive networks map explicitly which entities engage in associative relationships, neural networks perform an implicit mapping of correlations in cognitive data as weights, obtained after training over labelled data and whose interpretation is not immediately evident to the experimenter. This book aims to bring together quantitative, innovative research that focuses on modelling knowledge through cognitive and neural networks to gain insight into mechanisms driving cognitive processes related to knowledge structuring, exploration, and learning. The book comprises a variety of publication types, including reviews and theoretical papers, empirical research, computational modelling, and big data analysis. All papers here share a commonality: they demonstrate how the application of network science and AI can extend and broaden cognitive science in ways that traditional approaches cannot

    Peeking into the other half of the glass : handling polarization in recommender systems.

    Get PDF
    This dissertation is about filtering and discovering information online while using recommender systems. In the first part of our research, we study the phenomenon of polarization and its impact on filtering and discovering information. Polarization is a social phenomenon, with serious consequences, in real-life, particularly on social media. Thus it is important to understand how machine learning algorithms, especially recommender systems, behave in polarized environments. We study polarization within the context of the users\u27 interactions with a space of items and how this affects recommender systems. We first formalize the concept of polarization based on item ratings and then relate it to the item reviews, when available. We then propose a domain independent data science pipeline to automatically detect polarization using the ratings rather than the properties, typically used to detect polarization, such as item\u27s content or social network topology. We perform an extensive comparison of polarization measures on several benchmark data sets and show that our polarization detection framework can detect different degrees of polarization and outperforms existing measures in capturing an intuitive notion of polarization. We also investigate and uncover certain peculiar patterns that are characteristic of environments where polarization emerges: A machine learning algorithm finds it easier to learn discriminating models in polarized environments: The models will quickly learn to keep each user in the safety of their preferred viewpoint, essentially, giving rise to filter bubbles and making them easier to learn. After quantifying the extent of polarization in current recommender system benchmark data, we propose new counter-polarization approaches for existing collaborative filtering recommender systems, focusing particularly on the state of the art models based on Matrix Factorization. Our work represents an essential step toward the new research area concerned with quantifying, detecting and counteracting polarization in human-generated data and machine learning algorithms.We also make a theoretical analysis of how polarization affects learning latent factor models, and how counter-polarization affects these models. In the second part of our dissertation, we investigate the problem of discovering related information by recommendation of tags on social media micro-blogging platforms. Real-time micro-blogging services such as Twitter have recently witnessed exponential growth, with millions of active web users who generate billions of micro-posts to share information, opinions and personal viewpoints, daily. However, these posts are inherently noisy and unstructured because they could be in any format, hence making them difficult to organize for the purpose of retrieval of relevant information. One way to solve this problem is using hashtags, which are quickly becoming the standard approach for annotation of various information on social media, such that varied posts about the same or related topic are annotated with the same hashtag. However hashtags are not used in a consistent manner and most importantly, are completely optional to use. This makes them unreliable as the sole mechanism for searching for relevant information. We investigate mechanisms for consolidating the hashtag space using recommender systems. Our methods are general enough that they can be used for hashtag annotation in various social media services such as twitter, as well as for general item recommendations on systems that rely on implicit user interest data such as e-learning and news sites, or explicit user ratings, such as e-commerce and online entertainment sites. To conclude, we propose a methodology to extract stories based on two types of hashtag co-occurrence graphs. Our research in hashtag recommendation was able to exploit the textual content that is available as part of user messages or posts, and thus resulted in hybrid recommendation strategies. Using content within this context can bridge polarization boundaries. However, when content is not available, is missing, or is unreliable, as in the case of platforms that are rich in multimedia and multilingual posts, the content option becomes less powerful and pure collaborative filtering regains its important role, along with the challenges of polarization

    Multi Domain Semantic Information Retrieval Based on Topic Model

    Get PDF
    Over the last decades, there have been remarkable shifts in the area of Information Retrieval (IR) as huge amount of information is increasingly accumulated on the Web. The gigantic information explosion increases the need for discovering new tools that retrieve meaningful knowledge from various complex information sources. Thus, techniques primarily used to search and extract important information from numerous database sources have been a key challenge in current IR systems. Topic modeling is one of the most recent techniquesthat discover hidden thematic structures from large data collections without human supervision. Several topic models have been proposed in various fields of study and have been utilized extensively for many applications. Latent Dirichlet Allocation (LDA) is the most well-known topic model that generates topics from large corpus of resources, such as text, images, and audio.It has been widely used in many areas in information retrieval and data mining, providing efficient way of identifying latent topics among document collections. However, LDA has a drawback that topic cohesion within a concept is attenuated when estimating infrequently occurring words. Moreover, LDAseems not to consider the meaning of words, but rather to infer hidden topics based on a statisticalapproach. However, LDA can cause either reduction in the quality of topic words or increase in loose relations between topics. In order to solve the previous problems, we propose a domain specific topic model that combines domain concepts with LDA. Two domain specific algorithms are suggested for solving the difficulties associated with LDA. The main strength of our proposed model comes from the fact that it narrows semantic concepts from broad domain knowledge to a specific one which solves the unknown domain problem. Our proposed model is extensively tested on various applications, query expansion, classification, and summarization, to demonstrate the effectiveness of the model. Experimental results show that the proposed model significantly increasesthe performance of applications

    A Pattern Approach to Examine the Design Space of Spatiotemporal Visualization

    Get PDF
    Pattern language has been widely used in the development of visualization systems. This dissertation applies a pattern language approach to explore the design space of spatiotemporal visualization. The study provides a framework for both designers and novices to communicate, develop, evaluate, and share spatiotemporal visualization design on an abstract level. The touchstone of the work is a pattern language consisting of fifteen design patterns and four categories. In order to validate the design patterns, the researcher created two visualization systems with this framework in mind. The first system displayed the daily routine of human beings via a polygon-based visualization. The second system showed the spatiotemporal patterns of co-occurring hashtags with a spiral map, sunburst diagram, and small multiples. The evaluation results demonstrated the effectiveness of the proposed design patterns to guide design thinking and create novel visualization practices

    Attribute lattice: a graph-based conceptual modeling grammar for heterogeneous data

    Get PDF
    One key characteristic of big data is variety. With massive and growing amounts of data existing in independent and heterogeneous (structured and unstructured) sources, assigning consistent and interoperable data semantics, which is essential for meaningful use of data, is an increasingly important challenge. I argue, conceptual models, in contrast to their traditional roles in the Information System development, can be used to represent data semantics as perceived by the user of data. In this thesis, I use principles from philosophical ontology, human cognition (i.e., classification theory), and graph theory to offer a theory-based conceptual modeling grammar for this purpose. This grammar reflects data from users of data perspective and independent from data source schema. I formally define the concept of attribute lattice as a graph-based, schema-free conceptual modeling grammar that represents attributes of instances in the domain of interest and precedence relations among them. Each node in an attribute lattice represents an attribute - a true statement (predicate) about some instances in the domain. Each directed arc represents a precedence relation indicating that possessing one attribute implies possessing another attribute. In this thesis, based on the premise that inherent classification is a barrier that hinders semantic interoperation of heterogeneous data sources, a human cognition based conceptual modeling grammar is introduced as an effective way to resolve semantic heterogeneity. This grammar represents the precedence relationship among attributes as perceived by human user and provides a mechanism to infer classes based on the pattern of precedences. Hence, a key contribution of attribute lattice is semantic relativism – that is, the classification in this grammar relies on the pattern of precedence relationship among attributes rather than fixed classes. This modeling grammar uses the immediate and semantic neighbourhoods of an attribute to designate an attribute as either a category, a class or a property and to specify the expansion of an attribute – attributes which are semantically equal to the given attribute. The introduced conceptual modeling grammar is implemented as an artifact to store and manage attribute lattices, to graphically represent them, and integrate lattices from various heterogeneous sources. With the ever-increasing amount of unstructured data (mostly text data) from various data sources such as social media, integrating text data with other data sources has gained considerable attention. This massive amount of data, however, makes finding the data relevant to a topic of interest a new challenge. I argue that the attribute lattice provides a robust semantic foundation to address this information retrieval challenge from unstructured data sources. Hence, a topic modeling approach based on the attribute lattice is proposed for Twitter. This topic model conceptualizes topic structure of tweets related to the domain of interest and enhances information retrieval by improving the semantic interpretability of hashtags

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience
    • …
    corecore