61 research outputs found

    Shape-based compliance control for snake robots

    Get PDF
    I serpenti robot sono una classe di meccanismi iper-ridondanti che appartiene alla robotica modulare. Grazie alla loro forma snella ed allungata e all'alto grado di ridondanza possono muoversi in ambienti complessi con elevata agilità. L'abilità di spostarsi, manipolare e adattarsi efficientemente ad una grande varietà di terreni li rende ideali per diverse applicazioni, come ad esempio attività di ricerca e soccorso, ispezione o ricognizione. I robot serpenti si muovono nello spazio modificando la propria forma, senza necessità di ulteriori dispositivi quali ruote od arti. Tali deformazioni, che consistono in movimenti ondulatori ciclici che generano uno spostamento dell'intero meccanismo, vengono definiti andature. La maggior parte di esse sono ispirate al mondo naturale, come lo strisciamento, il movimento laterale o il movimento a concertina, mentre altre sono create per applicazioni specifiche, come il rotolamento o l'arrampicamento. Un serpente robot con molti gradi di libertà deve essere capace di coordinare i propri giunti e reagire ad ostacoli in tempo reale per riuscire a muoversi efficacemente in ambienti complessi o non strutturati. Inoltre, aumentare la semplicità e ridurre il numero di controllori necessari alla locomozione alleggerise una struttura di controllo che potrebbe richiedere complessità per ulteriori attività specifiche. L'obiettivo di questa tesi è ottenere un comportamento autonomo cedevole che si adatti alla conformazione dell'ambiente in cui il robot si sta spostando, accrescendo le capacità di locomozione del serpente robot. Sfruttando la cedevolezza intrinseca del serpente robot utilizzato in questo lavoro, il SEA Snake, e utilizzando un controllo che combina cedevolezza attiva ad una struttura di coordinazione che ammette una decentralizzazione variabile del robot, si dimostra come tre andature possano essere modificate per ottenere una locomozione efficiente in ambienti complessi non noti a priori o non modellabili

    The role of functional surfaces in the locomotion of snakes

    Get PDF
    Snakes are one of the world’s most versatile organisms, at ease slithering through rubble or climbing vertical tree trunks. Their adaptations for conquering complex terrain thus serve naturally as inspirations for search and rescue robotics. In a combined experimental and theoretical investigation, we elucidate the propulsion mechanisms of snakes on both hard and granular substrates. The focus of this study is on physics of snake interactions with its environment. Snakes use one of several modes of locomotion, such as slithering on flat surfaces, sidewinding on sand, or accordion-like concertina and worm-like rectilinear motion to traverse crevices. We present a series of experiments and supporting mathematical models demonstrating how snakes optimize their speed and efficiency by adjusting their frictional properties as a function of position and time. Particular attention is paid to a novel paradigm in locomotion, a snake’s active control of its scales, which enables it to modify its frictional interactions with the ground. We use this discovery to build bio-inspired limbless robots that have improved sensitivity to the current state of the art: Scalybot has individually controlled sets of belly scales enabling it to climb slopes of 55 degrees. These findings will result in developing new functional materials and control algorithms that will guide roboticists as they endeavor towards building more effective all-terrain search and rescue robots.Ph.D

    Challenges in the Locomotion of Self-Reconfigurable Modular Robots

    Get PDF
    Self-Reconfigurable Modular Robots (SRMRs) are assemblies of autonomous robotic units, referred to as modules, joined together using active connection mechanisms. By changing the connectivity of these modules, SRMRs are able to deliberately change their own shape in order to adapt to new environmental circumstances. One of the main motivations for the development of SRMRs is that conventional robots are limited in their capabilities by their morphology. The promise of the field of self-reconfigurable modular robotics is to design robots that are robust, self-healing, versatile, multi-purpose, and inexpensive. Despite significant efforts by numerous research groups worldwide, the potential advantages of SRMRs have yet to be realized. A high number of degrees of freedom and connectors make SRMRs more versatile, but also more complex both in terms of mechanical design and control algorithms. Scalability issues affect these robots in terms of hardware, low-level control, and high-level planning. In this thesis we identify and target three major challenges: (i) Hardware design; (ii) Planning and control; and, (iii) Application challenges. To tackle the hardware challenges we redesigned and manufactured the Self-Reconfigurable Modular Robot Roombots to meet desired requirements and characteristics. We explored in detail and improved two major mechanical components of an SRMR: the actuation and the connection mechanisms. We also analyzed the use of compliant extensions to increase locomotion performance in terms of locomotion speed and power consumption. We contributed to the control challenge by developing new methods that allow an arbitrary SRMR structure to learn to locomote in an efficient way. We defined a novel bio-inspired locomotion-learning framework that allows the quick and reliable optimization of new gaits after a morphological change due to self-reconfiguration or human construction. In order to find new suitable application scenarios for SRMRs we envision the use of Roombots modules to create Self-Reconfigurable Robotic Furniture. As a first step towards this vision, we explored the use and control of Plug-n-Play Robotic Elements that can augment existing pieces of furniture and create new functionalities in a household to improve quality of life

    Lateral undulation of a snake-like robot

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2007.Includes bibliographical references (p. 117-121).Snake robots have been studied by many researchers but historically more on a theoretical basis. Recently, more and more robotic snakes have been realized in hardware. This thesis presents a design process for the electrical, sensing, and mechanical systems needed to build a functional robotic snake capable of tactile and force sensing. Implementing a simple scheme which allows this capability permits the robot to laterally undulate without the use of wheels. The design methodology and implementation is detailed with schematics and a summary of results obtained from the hardware. Through manipulation of the body shape, the robot was able to move in the horizontal plane by pushing off of obstacles to create propulsive forces. It was found that lateral undulation is highly dependent on the actuator torque output and environmental friction.by Amit Gupta.S.M

    An Adaptable Robotic Snake using a Compliant Actuated Tensegrity Structure for Locomotion and its Motion Pattern Analysis

    Get PDF
    The thesis explores the possibilities that using a compliant actuated tensegrity structure to build an adapted robotic snake for locomotion. With the development of modern society, people are relying more and more on robots to assist in their work. The robotic snake is a type of robot that is often used in exploration and relief work on complex terrain due to its unique bionic structure. However, traditional snake-like robots have structures that focus on specific snake-like movement patterns, but cannot actually simulate how the spine and muscles of a snake can work, thus losing out on desirable features such as high energy efficiency and flexibility. In this work, a tensegrity structure is researched to enable a robotic snake to realize the structure and capabilities of a snake. A prototype has been built for experiments: three segments connected by springs and strings which forms a tension network. The prototype is actuated by the change of the tension within the network, just as the muscles in a snake contract and stretch around the spine. Experiments with the prototype show that it can carry out effective rectilinear movement and steering movement on a variety of terrain, and its overall speed is mainly limited by the friction coefficient of the ground. However, because the underside of the body module prevents the module from tilting, the prototype cannot perform serpentine movement. More improvements in the shape design of the body modules and motion control could also be studied in future work
    • …
    corecore