645 research outputs found

    Network Theoretic Analyses and Enhancements of Evolutionary Algorithms

    Get PDF
    Information in evolutionary algorithms is available at multiple levels; however most analyses focus on the individual level. This dissertation extracts useful information from networks and communities formed by examining interrelationships between individuals in the populations as they change with time. Network theoretic analyses are extremely useful in multiple fields and applications, e.g., biology (regulation of gene expression), organizational behavior (social networks), and intelligence data analysis (message traffic on the Internet). Evolving populations are represented as dynamic networks, and we show that changes in population characteristics can be recognized at the level of the networks representing successive generations, with implications for possible improvements in the evolutionary algorithm, e.g., in deciding when a population is prematurely converging, and when a reinitialization of the population may be beneficial to avoid computational effort, or to improve the probability of finding better points to examine. In this dissertation, we show that network theoretic analyses can be applied to study, analyze and improve the performance of evolutionary algorithms. We propose various approaches to study the dynamic behavior of evolutionary algorithms, each highlighting the benefits of studying community-level behaviors, using graph properties and metrics to analyze evolutionary algorithms, identifying imminent convergence, and identifying time points at which it would help to reseed a fraction of the population. Improvements to evolutionary algorithms result in alleviating the effects of premature convergence occurrences, and saving computational effort by reaching better solutions faster. We demonstrate that this new approach, using network science to analyze evolutionary algorithms, is advantageous for a variety of evolutionary algorithms, including Genetic Algorithms, Particle Swarm Optimization, and Learning Classifier Systems

    Macroscopic Traffic Model Validation of Large Networks and the Introduction of a Gradient Based Solver

    Get PDF
    Traffic models are important for the evaluation of various Intelligent Transport Systems and the development of new traffic infrastructure. In order for this to be done accurately and with confidence the correct parameter values of the model must be identified. The focus of this thesis is the identification and confirmation of these parameters, which is model validation. Validation is performed on two different models; the first-order CTM and the second-order METANET model. The CTM is validated for two UK sites of 7.8 and 21.9 km and METANET for the same two sites using a variety of meta-heuristic algorithms. This is done using a newly developed method to allow for the optimisation method to determine the number of parameters to be used and the spatial extent of their application. This allows for the removal of expert engineering knowledge and ad-hoc decomposition of networks. This thesis also develops a methodology by use of Automatic Differentiation to allow gradient based optimisation to be used. This approach successfully validated the METANET model for the 21.9 km site and also a large network surrounding the city of Manchester of 186.9 km. This proves that gradient based optimisation can be used for the macroscopic traffic model validation problem. In fact the performance of the developed gradient method is superior to the meta-heuristics tested for the same sites. The methodology defined also allows for more data to be obtained from the model such as its Jacobian and the sensitivity of the objective function being used relative to the individual parameters. Space-Time contour plots of this newly acquired data show structures and shock waves that are not visible in the mean speed contour diagrams

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Reactive approach for automating exploration and exploitation in ant colony optimization

    Get PDF
    Ant colony optimization (ACO) algorithms can be used to solve nondeterministic polynomial hard problems. Exploration and exploitation are the main mechanisms in controlling search within the ACO. Reactive search is an alternative technique to maintain the dynamism of the mechanics. However, ACO-based reactive search technique has three (3) problems. First, the memory model to record previous search regions did not completely transfer the neighborhood structures to the next iteration which leads to arbitrary restart and premature local search. Secondly, the exploration indicator is not robust due to the difference of magnitudes in distance matrices for the current population. Thirdly, the parameter control techniques that utilize exploration indicators in their feedback process do not consider the problem of indicator robustness. A reactive ant colony optimization (RACO) algorithm has been proposed to overcome the limitations of the reactive search. RACO consists of three main components. The first component is a reactive max-min ant system algorithm for recording the neighborhood structures. The second component is a statistical machine learning mechanism named ACOustic to produce a robust exploration indicator. The third component is the ACO-based adaptive parameter selection algorithm to solve the parameterization problem which relies on quality, exploration and unified criteria in assigning rewards to promising parameters. The performance of RACO is evaluated on traveling salesman and quadratic assignment problems and compared with eight metaheuristics techniques in terms of success rate, Wilcoxon signed-rank, Chi-square and relative percentage deviation. Experimental results showed that the performance of RACO is superior than the eight (8) metaheuristics techniques which confirmed that RACO can be used as a new direction for solving optimization problems. RACO can be used in providing a dynamic exploration and exploitation mechanism, setting a parameter value which allows an efficient search, describing the amount of exploration an ACO algorithm performs and detecting stagnation situations

    Development of Hybrid PS-FW GMPPT Algorithm for improving PV System Performance Under Partial Shading Conditions

    Get PDF
    A global maximum power point tracking (MPPT) algorithm hybrid based on Particle Swarm Fireworks (PS-FW) algorithm is proposed which is formed with Particle Swarm Optimization and Fireworks Algorithm. The algorithm tracks the global maximum power point (MPP) when conventional MPPT methods fail due to occurrence of partial shading conditions. With the applied strategies and operators, PS-FW algorithm obtains superior performances verified under simulation and experimental setup with multiple cases of shading patterns

    Information Sharing Impact of Stochastic Diffusion Search on Population-Based Algorithms

    Get PDF
    This work introduces a generalised hybridisation strategy which utilises the information sharing mechanism deployed in Stochastic Diffusion Search when applied to a number of population-based algorithms, effectively merging this nature-inspired algorithm with some population-based algorithms. The results reported herein demonstrate that the hybrid algorithm, exploiting information-sharing within the population, improves the optimisation capability of some well-known optimising algorithms, including Particle Swarm Optimisation, Differential Evolution algorithm and Genetic Algorithm. This hybridisation strategy adds the information exchange mechanism of Stochastic Diffusion Search to any population-based algorithm without having to change the implementation of the algorithm used, making the integration process easy to adopt and evaluate. Additionally, in this work, Stochastic Diffusion Search has also been deployed as a global optimisation algorithm, and the optimisation capability of two newly introduced minimised variants of Particle Swarm algorithms is investigated
    corecore