4,474 research outputs found

    A Scalable Algorithm For Sparse Portfolio Selection

    Full text link
    The sparse portfolio selection problem is one of the most famous and frequently-studied problems in the optimization and financial economics literatures. In a universe of risky assets, the goal is to construct a portfolio with maximal expected return and minimum variance, subject to an upper bound on the number of positions, linear inequalities and minimum investment constraints. Existing certifiably optimal approaches to this problem do not converge within a practical amount of time at real world problem sizes with more than 400 securities. In this paper, we propose a more scalable approach. By imposing a ridge regularization term, we reformulate the problem as a convex binary optimization problem, which is solvable via an efficient outer-approximation procedure. We propose various techniques for improving the performance of the procedure, including a heuristic which supplies high-quality warm-starts, a preprocessing technique for decreasing the gap at the root node, and an analytic technique for strengthening our cuts. We also study the problem's Boolean relaxation, establish that it is second-order-cone representable, and supply a sufficient condition for its tightness. In numerical experiments, we establish that the outer-approximation procedure gives rise to dramatic speedups for sparse portfolio selection problems.Comment: Submitted to INFORMS Journal on Computin

    On SOCP-based disjunctive cuts for solving a class of integer bilevel nonlinear programs

    Full text link
    We study a class of integer bilevel programs with second-order cone constraints at the upper-level and a convex-quadratic objective function and linear constraints at the lower-level. We develop disjunctive cuts (DCs) to separate bilevel-infeasible solutions using a second-order-cone-based cut-generating procedure. We propose DC separation strategies and consider several approaches for removing redundant disjunctions and normalization. Using these DCs, we propose a branch-and-cut algorithm for the problem class we study, and a cutting-plane method for the problem variant with only binary variables. We present an extensive computational study on a diverse set of instances, including instances with binary and with integer variables, and instances with a single and with multiple linking constraints. Our computational study demonstrates that the proposed enhancements of our solution approaches are effective for improving the performance. Moreover, both of our approaches outperform a state-of-the-art generic solver for mixed-integer bilevel linear programs that is able to solve a linearized version of our binary instances.Comment: arXiv admin note: substantial text overlap with arXiv:2111.0682

    Branching strategies for mixed-integer programs containing logical constraints and decomposable structure

    Get PDF
    Decision-making optimisation problems can include discrete selections, e.g. selecting a route, arranging non-overlapping items or designing a network of items. Branch-and-bound (B&B), a widely applied divide-and-conquer framework, often solves such problems by considering a continuous approximation, e.g. replacing discrete variable domains by a continuous superset. Such approximations weaken the logical relations, e.g. for discrete variables corresponding to Boolean variables. Branching in B&B reintroduces logical relations by dividing the search space. This thesis studies designing B&B branching strategies, i.e. how to divide the search space, for optimisation problems that contain both a logical and a continuous structure. We begin our study with a large-scale, industrially-relevant optimisation problem where the objective consists of machine-learnt gradient-boosted trees (GBTs) and convex penalty functions. GBT functions contain if-then queries which introduces a logical structure to this problem. We propose decomposition-based rigorous bounding strategies and an iterative heuristic that can be embedded into a B&B algorithm. We approach branching with two strategies: a pseudocost initialisation and strong branching that target the structure of GBT and convex penalty aspects of the optimisation objective, respectively. Computational tests show that our B&B approach outperforms state-of-the-art solvers in deriving rigorous bounds on optimality. Our second project investigates how satisfiability modulo theories (SMT) derived unsatisfiable cores may be utilised in a B&B context. Unsatisfiable cores are subsets of constraints that explain an infeasible result. We study two-dimensional bin packing (2BP) and develop a B&B algorithm that branches on SMT unsatisfiable cores. We use the unsatisfiable cores to derive cuts that break 2BP symmetries. Computational results show that our B&B algorithm solves 20% more instances when compared with commercial solvers on the tested instances. Finally, we study convex generalized disjunctive programming (GDP), a framework that supports logical variables and operators. Convex GDP includes disjunctions of mathematical constraints, which motivate branching by partitioning the disjunctions. We investigate separation by branching, i.e. eliminating solutions that prevent rigorous bound improvement, and propose a greedy algorithm for building the branches. We propose three scoring methods for selecting the next branching disjunction. We also analyse how to leverage infeasibility to expedite the B&B search. Computational results show that our scoring methods can reduce the number of explored B&B nodes by an order of magnitude when compared with scoring methods proposed in literature. Our infeasibility analysis further reduces the number of explored nodes.Open Acces

    Speeding up Energy System Models - a Best Practice Guide

    Get PDF
    Background Energy system models (ESM) are widely used in research and industry to analyze todays and future energy systems and potential pathways for the European energy transition. Current studies address future policy design, analysis of technology pathways and of future energy systems. To address these questions and support the transformation of today’s energy systems, ESM have to increase in complexity to provide valuable quantitative insights for policy makers and industry. Especially when dealing with uncertainty and in integrating large shares of renewable energies, ESM require a detailed implementation of the underlying electricity system. The increased complexity of the models makes the application of ESM more and more difficult, as the models are limited by the available computational power of today’s decentralized workstations. Severe simplifications of the models are common strategies to solve problems in a reasonable amount of time – naturally significantly influencing the validity of results and reliability of the models in general. Solutions for Energy-System Modelling Within BEAM-ME a consortium of researchers from different research fields (system analysis, mathematics, operations research and informatics) develop new strategies to increase the computational performance of energy system models and to transform energy system models for usage on high performance computing clusters. Within the project, an ESM will be applied on two of Germany’s fastest supercomputers. To further demonstrate the general application of named techniques on ESM, a model experiment is implemented as part of the project. Within this experiment up to six energy system models will jointly develop, implement and benchmark speed-up methods. Finally, continually collecting all experiences from the project and the experiment, identified efficient strategies will be documented and general standards for increasing computational performance and for applying ESM to high performance computing will be documented in a best-practice guide

    Optimisation of an integrated transport and distribution system

    Get PDF
    Imperial Users onl

    Large-Scale Optimisation in Operations Management: Algorithms and Applications

    Get PDF
    The main contributions of this dissertation are the design, development and application of optimisation methodology, models and algorithms for large-scale problems arising in Operations Management. The first chapter introduces constraint transformations and valid inequalities that enhance the performance of column generation and Lagrange relaxation. I establish theoretical connections with dual-space reduction techniques and develop a novel algorithm that combines Lagrange relaxation and column generation. This algorithm is embedded in a branch-and-price scheme, which combines large neighbourhood and local search to generate upper bounds. Computational experiments on capacitated lot sizing show significant improvements over existing methodologies. The second chapter introduces a Horizon-Decomposition approach that partitions the problem horizon in contiguous intervals. In this way, subproblems identical to the original problem but of smaller size are created. The size of the master problem and the subproblems are regulated via two scalar parameters, giving rise to a family of reformulations. I investigate the efficiency of alternative parameter configurations empirically. Computational experiments on capacitated lot sizing demonstrate superior performance against commercial solvers. Finally, extensions to generic mathematical programs are presented. The final chapter shows how large-scale optimisation methods can be applied to complex operational problems, and presents a modelling framework for scheduling the transhipment operations of the Noble Group, a global supply chain manager of energy products. I focus on coal operations, where coal is transported from mines to vessels using barges and floating cranes. Noble pay millions of dollars in penalties for delays, and for additional resources hired to minimize the impact of delays. A combination of column generation and dedicated heuristics reduces the cost of penalties and additional resources, and improves the efficiency of the operations. Noble currently use the developed framework, and report significant savings attributed to it

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    On High-Performance Benders-Decomposition-Based Exact Methods with Application to Mixed-Integer and Stochastic Problems

    Get PDF
    RÉSUMÉ : La programmation stochastique en nombres entiers (SIP) combine la difficulté de l’incertitude et de la non-convexité et constitue une catégorie de problèmes extrêmement difficiles à résoudre. La résolution efficace des problèmes SIP est d’une grande importance en raison de leur vaste applicabilité. Par conséquent, l’intérêt principal de cette dissertation porte sur les méthodes de résolution pour les SIP. Nous considérons les SIP en deux étapes et présentons plusieurs algorithmes de décomposition améliorés pour les résoudre. Notre objectif principal est de développer de nouveaux schémas de décomposition et plusieurs techniques pour améliorer les méthodes de décomposition classiques, pouvant conduire à résoudre optimalement divers problèmes SIP. Dans le premier essai de cette thèse, nous présentons une revue de littérature actualisée sur l’algorithme de décomposition de Benders. Nous fournissons une taxonomie des améliorations algorithmiques et des stratégies d’accélération de cet algorithme pour synthétiser la littérature et pour identifier les lacunes, les tendances et les directions de recherche potentielles. En outre, nous discutons de l’utilisation de la décomposition de Benders pour développer une (méta- )heuristique efficace, décrire les limites de l’algorithme classique et présenter des extensions permettant son application à un plus large éventail de problèmes. Ensuite, nous développons diverses techniques pour surmonter plusieurs des principaux inconvénients de l’algorithme de décomposition de Benders. Nous proposons l’utilisation de plans de coupe, de décomposition partielle, d’heuristiques, de coupes plus fortes, de réductions et de stratégies de démarrage à chaud pour pallier les difficultés numériques dues aux instabilités, aux inefficacités primales, aux faibles coupes d’optimalité ou de réalisabilité, et à la faible relaxation linéaire. Nous testons les stratégies proposées sur des instances de référence de problèmes de conception de réseau stochastique. Des expériences numériques illustrent l’efficacité des techniques proposées. Dans le troisième essai de cette thèse, nous proposons une nouvelle approche de décomposition appelée méthode de décomposition primale-duale. Le développement de cette méthode est fondé sur une reformulation spécifique des sous-problèmes de Benders, où des copies locales des variables maîtresses sont introduites, puis relâchées dans la fonction objective. Nous montrons que la méthode proposée atténue significativement les inefficacités primales et duales de la méthode de décomposition de Benders et qu’elle est étroitement liée à la méthode de décomposition duale lagrangienne. Les résultats de calcul sur divers problèmes SIP montrent la supériorité de cette méthode par rapport aux méthodes classiques de décomposition. Enfin, nous étudions la parallélisation de la méthode de décomposition de Benders pour étendre ses performances numériques à des instances plus larges des problèmes SIP. Les variantes parallèles disponibles de cette méthode appliquent une synchronisation rigide entre les processeurs maître et esclave. De ce fait, elles souffrent d’un important déséquilibre de charge lorsqu’elles sont appliquées aux problèmes SIP. Cela est dû à un problème maître difficile qui provoque un important déséquilibre entre processeur et charge de travail. Nous proposons une méthode Benders parallèle asynchrone dans un cadre de type branche-et-coupe. L’assouplissement des exigences de synchronisation entraine des problèmes de convergence et d’efficacité divers auxquels nous répondons en introduisant plusieurs techniques d’accélération et de recherche. Les résultats indiquent que notre algorithme atteint des taux d’accélération plus élevés que les méthodes synchronisées conventionnelles et qu’il est plus rapide de plusieurs ordres de grandeur que CPLEX 12.7.----------ABSTRACT : Stochastic integer programming (SIP) combines the difficulty of uncertainty and non-convexity, and constitutes a class of extremely challenging problems to solve. Efficiently solving SIP problems is of high importance due to their vast applicability. Therefore, the primary focus of this dissertation is on solution methods for SIPs. We consider two-stage SIPs and present several enhanced decomposition algorithms for solving them. Our main goal is to develop new decomposition schemes and several acceleration techniques to enhance the classical decomposition methods, which can lead to efficiently solving various SIP problems to optimality. In the first essay of this dissertation, we present a state-of-the-art survey of the Benders decomposition algorithm. We provide a taxonomy of the algorithmic enhancements and the acceleration strategies of this algorithm to synthesize the literature, and to identify shortcomings, trends and potential research directions. In addition, we discuss the use of Benders decomposition to develop efficient (meta-)heuristics, describe the limitations of the classical algorithm, and present extensions enabling its application to a broader range of problems. Next, we develop various techniques to overcome some of the main shortfalls of the Benders decomposition algorithm. We propose the use of cutting planes, partial decomposition, heuristics, stronger cuts, and warm-start strategies to alleviate the numerical challenges arising from instabilities, primal inefficiencies, weak optimality/feasibility cuts, and weak linear relaxation. We test the proposed strategies with benchmark instances from stochastic network design problems. Numerical experiments illustrate the computational efficiency of the proposed techniques. In the third essay of this dissertation, we propose a new and high-performance decomposition approach, called Benders dual decomposition method. The development of this method is based on a specific reformulation of the Benders subproblems, where local copies of the master variables are introduced and then priced out into the objective function. We show that the proposed method significantly alleviates the primal and dual shortfalls of the Benders decomposition method and it is closely related to the Lagrangian dual decomposition method. Computational results on various SIP problems show the superiority of this method compared to the classical decomposition methods as well as CPLEX 12.7. Finally, we study parallelization of the Benders decomposition method. The available parallel variants of this method implement a rigid synchronization among the master and slave processors. Thus, it suffers from significant load imbalance when applied to the SIP problems. This is mainly due to having a hard mixed-integer master problem that can take hours to be optimized. We thus propose an asynchronous parallel Benders method in a branchand- cut framework. However, relaxing the synchronization requirements entails convergence and various efficiency problems which we address them by introducing several acceleration techniques and search strategies. In particular, we propose the use of artificial subproblems, cut generation, cut aggregation, cut management, and cut propagation. The results indicate that our algorithm reaches higher speedup rates compared to the conventional synchronized methods and it is several orders of magnitude faster than CPLEX 12.7

    On parallel computing for stochastic optimization models and algorithms

    Get PDF
    167 p.Esta tesis tiene como objetivo principal la resolución de problemas de optimización bajo incertidumbre a gran escala, mediante la interconexión entre las disciplinas de Optimización estocástica y Computación en paralelo. Se describen algoritmos de descomposición desde la perspectivas de programación matemática y del aprovechamiento de recursos computacionales con el fin de resolver problemas de manera más rápida, de mayores dimensiones o/y obtener mejores resultados que sus técnicas homónimas en serie. Se han desarrollado dos estrategias de paralelización, denotadas como inner y outer. La primera de las cuales, realiza tareas en paralelo dentro de un esquema algorítmico en serie, mientras que la segunda ejecuta de manera simultánea y coordinada varios algoritmos secuenciales. La mayor descomposición del problema original, compartiendo el área de factibilidad, creando fases de sincronización y comunicación entre ejecuciones paralelas o definiendo condiciones iniciales divergentes, han sido claves en la eficacia de los diseños de los algoritmos propuestos. Como resultado, se presentan tanto algoritmos exactos como matheurísticos, que combinan metodologías metaheurísticas y técnicas de programación matemática. Se analiza la escalabilidad de cada algoritmo propuesto, y se consideran varios bancos de problemas de diferentes dimensiones, hasta un máximo de 58 millones de restricciones y 54 millones de variables (de las cuales 15 millones son binarias). La experiencia computacional ha sido principalmente realizada en el cluster ARINA de SGI/IZO-SGIker de la UPV/EHU
    • …
    corecore