8,238 research outputs found

    Extended Variational Formulation for Heterogeneous Partial Differential Equations

    Get PDF
    We address the coupling of an advection equation with a diffusion-advection equation, for solutions featuring boundary layers. We consider non-overlapping domain decompositions and we face up the heterogeneous problem using an extended variational formulation. We will prove the equivalence between the latter formulation and a treatment based on a singular perturbation theory. An exhaustive comparison in terms of solution and computational efficiency between these formulations is carried ou

    Extended Variational Formulation for Heterogeneous Partial Differential Equations

    Get PDF

    Non-negative mixed finite element formulations for a tensorial diffusion equation

    Full text link
    We consider the tensorial diffusion equation, and address the discrete maximum-minimum principle of mixed finite element formulations. In particular, we address non-negative solutions (which is a special case of the maximum-minimum principle) of mixed finite element formulations. The discrete maximum-minimum principle is the discrete version of the maximum-minimum principle. In this paper we present two non-negative mixed finite element formulations for tensorial diffusion equations based on constrained optimization techniques (in particular, quadratic programming). These proposed mixed formulations produce non-negative numerical solutions on arbitrary meshes for low-order (i.e., linear, bilinear and trilinear) finite elements. The first formulation is based on the Raviart-Thomas spaces, and is obtained by adding a non-negative constraint to the variational statement of the Raviart-Thomas formulation. The second non-negative formulation based on the variational multiscale formulation. For the former formulation we comment on the affect of adding the non-negative constraint on the local mass balance property of the Raviart-Thomas formulation. We also study the performance of the active set strategy for solving the resulting constrained optimization problems. The overall performance of the proposed formulation is illustrated on three canonical test problems.Comment: 40 pages using amsart style file, and 15 figure

    Recent advances in the evolution of interfaces: thermodynamics, upscaling, and universality

    Full text link
    We consider the evolution of interfaces in binary mixtures permeating strongly heterogeneous systems such as porous media. To this end, we first review available thermodynamic formulations for binary mixtures based on \emph{general reversible-irreversible couplings} and the associated mathematical attempts to formulate a \emph{non-equilibrium variational principle} in which these non-equilibrium couplings can be identified as minimizers. Based on this, we investigate two microscopic binary mixture formulations fully resolving heterogeneous/perforated domains: (a) a flux-driven immiscible fluid formulation without fluid flow; (b) a momentum-driven formulation for quasi-static and incompressible velocity fields. In both cases we state two novel, reliably upscaled equations for binary mixtures/multiphase fluids in strongly heterogeneous systems by systematically taking thermodynamic features such as free energies into account as well as the system's heterogeneity defined on the microscale such as geometry and materials (e.g. wetting properties). In the context of (a), we unravel a \emph{universality} with respect to the coarsening rate due to its independence of the system's heterogeneity, i.e. the well-known O(t1/3){\cal O}(t^{1/3})-behaviour for homogeneous systems holds also for perforated domains. Finally, the versatility of phase field equations and their \emph{thermodynamic foundation} relying on free energies, make the collected recent developments here highly promising for scientific, engineering and industrial applications for which we provide an example for lithium batteries

    Enforcing the non-negativity constraint and maximum principles for diffusion with decay on general computational grids

    Full text link
    In this paper, we consider anisotropic diffusion with decay, and the diffusivity coefficient to be a second-order symmetric and positive definite tensor. It is well-known that this particular equation is a second-order elliptic equation, and satisfies a maximum principle under certain regularity assumptions. However, the finite element implementation of the classical Galerkin formulation for both anisotropic and isotropic diffusion with decay does not respect the maximum principle. We first show that the numerical accuracy of the classical Galerkin formulation deteriorates dramatically with increase in the decay coefficient for isotropic medium and violates the discrete maximum principle. However, in the case of isotropic medium, the extent of violation decreases with mesh refinement. We then show that, in the case of anisotropic medium, the classical Galerkin formulation for anisotropic diffusion with decay violates the discrete maximum principle even at lower values of decay coefficient and does not vanish with mesh refinement. We then present a methodology for enforcing maximum principles under the classical Galerkin formulation for anisotropic diffusion with decay on general computational grids using optimization techniques. Representative numerical results (which take into account anisotropy and heterogeneity) are presented to illustrate the performance of the proposed formulation

    Numerical Homogenization of Heterogeneous Fractional Laplacians

    Get PDF
    In this paper, we develop a numerical multiscale method to solve the fractional Laplacian with a heterogeneous diffusion coefficient. When the coefficient is heterogeneous, this adds to the computational costs. Moreover, the fractional Laplacian is a nonlocal operator in its standard form, however the Caffarelli-Silvestre extension allows for a localization of the equations. This adds a complexity of an extra spacial dimension and a singular/degenerate coefficient depending on the fractional order. Using a sub-grid correction method, we correct the basis functions in a natural weighted Sobolev space and show that these corrections are able to be truncated to design a computationally efficient scheme with optimal convergence rates. A key ingredient of this method is the use of quasi-interpolation operators to construct the fine scale spaces. Since the solution of the extended problem on the critical boundary is of main interest, we construct a projective quasi-interpolation that has both dd and d+1d+1 dimensional averages over subsets in the spirit of the Scott-Zhang operator. We show that this operator satisfies local stability and local approximation properties in weighted Sobolev spaces. We further show that we can obtain a greater rate of convergence for sufficient smooth forces, and utilizing a global L2L^2 projection on the critical boundary. We present some numerical examples, utilizing our projective quasi-interpolation in dimension 2+12+1 for analytic and heterogeneous cases to demonstrate the rates and effectiveness of the method
    • …
    corecore