12 research outputs found

    Extended Tversky Similarity for Resolving Terminological Heterogeneities across Ontologies

    Get PDF
    International audienceWe propose a novel method to compute similarity between cross-ontology concepts based on the amount of overlap of the information content of their labels. We extend Tversky's similarity measure by using the information content of each term within an ontology label both for the similarity computation and for the weight assignment to tokens. The approach is suitable for handling compound labels. Our experiments showed that it outperforms existing terminological similarity measures for the ontology matching task

    Semantic Interoperability of Geospatial Ontologies: A Model-theoretic Analysis

    Get PDF
    People sometimes misunderstand each other, even when they use the same language to communicate. Often these misunderstandings happen when people use the same words to mean different things, in effect disagreeing about meanings. This thesis investigates such disagreements about meaning, considering them to be issues of semantic interoperability. This thesis explores semantic interoperability via a particular formal framework used to specify people’s conceptualizations of a given domain. This framework is called an ‘ontology,’ which is a collection of data and axioms written in a logical language equipped with a modeltheoretic semantics. The domain under consideration is the geospatial domain. Specifically, this thesis investigates to what extent two geospatial ontologies are semantically interoperable when they ‘agree’ on the meanings of certain basic terms and statements, but ‘disagree’ on others. This thesis defines five levels of semantic interoperability that can exist between two ontologies. Each of these levels is, in turn, defined in terms of six ‘compatibility conditions,’ which precisely describe how the results of queries to one ontology are compatible with the results of queries to another ontology. Using certain assumptions of finiteness, the semantics of each ontology is captured by a finite number of models, each of which is also finite. The set of all models of a given ontology is called its model class. The five levels of semantic interoperability are proven to correspond exactly to five particular relationships between the model classes of the ontologies. The exact level of semantic interoperability between ontologies can in some cases be computed; in other cases a heuristic can be used to narrow the possible levels of semantic interoperability. The main results are: (1) definitions of five levels of semantic interoperability based on six compatibility conditions; (2) proofs of the correspondence between levels of semantic interoperability and the model-class relation between two ontologies; and (3) a method for computing, given certain assumptions of finiteness, the exact level of semantic interoperability between two ontologies. These results define precisely, in terms of models and queries, the often poorly defined notion of semantic interoperability, thus providing a touchstone for clear definitions of semantic interoperability elsewhere

    Semantic Similarity of Spatial Scenes

    Get PDF
    The formalization of similarity in spatial information systems can unleash their functionality and contribute technology not only useful, but also desirable by broad groups of users. As a paradigm for information retrieval, similarity supersedes tedious querying techniques and unveils novel ways for user-system interaction by naturally supporting modalities such as speech and sketching. As a tool within the scope of a broader objective, it can facilitate such diverse tasks as data integration, landmark determination, and prediction making. This potential motivated the development of several similarity models within the geospatial and computer science communities. Despite the merit of these studies, their cognitive plausibility can be limited due to neglect of well-established psychological principles about properties and behaviors of similarity. Moreover, such approaches are typically guided by experience, intuition, and observation, thereby often relying on more narrow perspectives or restrictive assumptions that produce inflexible and incompatible measures. This thesis consolidates such fragmentary efforts and integrates them along with novel formalisms into a scalable, comprehensive, and cognitively-sensitive framework for similarity queries in spatial information systems. Three conceptually different similarity queries at the levels of attributes, objects, and scenes are distinguished. An analysis of the relationship between similarity and change provides a unifying basis for the approach and a theoretical foundation for measures satisfying important similarity properties such as asymmetry and context dependence. The classification of attributes into categories with common structural and cognitive characteristics drives the implementation of a small core of generic functions, able to perform any type of attribute value assessment. Appropriate techniques combine such atomic assessments to compute similarities at the object level and to handle more complex inquiries with multiple constraints. These techniques, along with a solid graph-theoretical methodology adapted to the particularities of the geospatial domain, provide the foundation for reasoning about scene similarity queries. Provisions are made so that all methods comply with major psychological findings about people’s perceptions of similarity. An experimental evaluation supplies the main result of this thesis, which separates psychological findings with a major impact on the results from those that can be safely incorporated into the framework through computationally simpler alternatives

    Facilitating file retrieval on resource limited devices

    Get PDF
    The rapid development of mobile technologies has facilitated users to generate and store files on mobile devices. However, it has become a challenging issue for users to search efficiently and effectively for files of interest in a mobile environment that involves a large number of mobile nodes. In this thesis, file management and retrieval alternatives have been investigated to propose a feasible framework that can be employed on resource-limited devices without altering their operating systems. The file annotation and retrieval framework (FARM) proposed in the thesis automatically annotates the files with their basic file attributes by extracting them from the underlying operating system of the device. The framework is implemented in the JME platform as a case study. This framework provides a variety of features for managing the metadata and file search features on the device itself and on other devices in a networked environment. FARM not only automates the file-search process but also provides accurate results as demonstrated by the experimental analysis. In order to facilitate a file search and take advantage of the Semantic Web Technologies, the SemFARM framework is proposed which utilizes the knowledge of a generic ontology. The generic ontology defines the most common keywords that can be used as the metadata of stored files. This provides semantic-based file search capabilities on low-end devices where the search keywords are enriched with additional knowledge extracted from the defined ontology. The existing frameworks annotate image files only, while SemFARM can be used to annotate all types of files. Semantic heterogeneity is a challenging issue and necessitates extensive research to accomplish the aim of a semantic web. For this reason, significant research efforts have been made in recent years by proposing an enormous number of ontology alignment systems to deal with ontology heterogeneities. In the process of aligning different ontologies, it is essential to encompass their semantic, structural or any system-specific measures in mapping decisions to produce more accurate alignments. The proposed solution, in this thesis, for ontology alignment presents a structural matcher, which computes the similarity between the super-classes, sub-classes and properties of two entities from different ontologies that require aligning. The proposed alignment system (OARS) uses Rough Sets to aggregate the results obtained from various matchers in order to deal with uncertainties during the mapping process of entities. The OARS uses a combinational approach by using a string-based and linguistic-based matcher, in addition to structural-matcher for computing the overall similarity between two entities. The performance of the OARS is evaluated in comparison with existing state of the art alignment systems in terms of precision and recall. The performance tests are performed by using benchmark ontologies and the results show significant improvements, specifically in terms of recall on all groups of test ontologies. There is no such existing framework, which can use alignments for file search on mobile devices. The ontology alignment paradigm is integrated in the SemFARM to further enhance the file search features of the framework as it utilises the knowledge of more than one ontology in order to perform a search query. The experimental evaluations show that it performs better in terms of precision and recall where more than one ontology is available when searching for a required file.EThOS - Electronic Theses Online ServiceEducation Commission of PakistanTechnology, PeshawarGBUnited Kingdo

    Philosophical foundations of neuroeconomics: economics and the revolutionary challenge from neuroscience.

    Get PDF
    This PhD thesis focuses on the philosophical foundations of Neuroeconomics, an innovative research program which combines findings and modelling tools from economics, psychology and neuroscience to account for human choice behaviour. The proponents of Neuroeconomics often manifest the ambition to foster radical modifications in the accounts of choice behaviour developed by its parent disciplines. This enquiry provides a philosophically informed appraisal of the potential for success and the relevance of neuroeconomic research for economics. My central claim is that neuroeconomists can help other economists to build more predictive and explanatory models, yet are unlikely to foster revolutionary modifications in the economic theory of choice. The contents are organized as follows. In chapters 1-2, I present neuroeconomists’ investigative tools, distinguish the most influential approaches to neuroeconomic research and reconstruct the case in favour of a neural enrichment of economic theory. In chapters 3-7, I combine insights from neuro-psychology, economic methodology and philosophy of science to develop a systematic critique of Neuroeconomics. In particular, I articulate four lines of argument to demonstrate that economists are provisionally justified in retaining a methodologically distinctive approach to the modelling of decision making. My first argument points to several evidential and epistemological concerns which complicate the interpretation of neural data and cast doubt on the inferences neuroeconomists often make in their studies. My second argument aims to show that the trade-offs between the modelling desiderata that neuroeconomists and other economists respectively value severely constrain the incorporation of neural insights into economic models. My third argument questions neuroeconomists’ attempts to develop a unified theory of choice behaviour by identifying some central issues on which they hold contrasting positions. My fourth argument differentiates various senses of the term ‘revolution’ and illustrates that neuroeconomists are unlikely to provide revolutionary contributions to economic theory in any of these senses

    Cognitive Foundations for Visual Analytics

    Full text link
    corecore