96 research outputs found

    Modularity and Neural Integration in Large-Vocabulary Continuous Speech Recognition

    Get PDF
    This Thesis tackles the problems of modularity in Large-Vocabulary Continuous Speech Recognition with use of Neural Network

    BagStack Classification for Data Imbalance Problems with Application to Defect Detection and Labeling in Semiconductor Units

    Get PDF
    abstract: Despite the fact that machine learning supports the development of computer vision applications by shortening the development cycle, finding a general learning algorithm that solves a wide range of applications is still bounded by the ”no free lunch theorem”. The search for the right algorithm to solve a specific problem is driven by the problem itself, the data availability and many other requirements. Automated visual inspection (AVI) systems represent a major part of these challenging computer vision applications. They are gaining growing interest in the manufacturing industry to detect defective products and keep these from reaching customers. The process of defect detection and classification in semiconductor units is challenging due to different acceptable variations that the manufacturing process introduces. Other variations are also typically introduced when using optical inspection systems due to changes in lighting conditions and misalignment of the imaged units, which makes the defect detection process more challenging. In this thesis, a BagStack classification framework is proposed, which makes use of stacking and bagging concepts to handle both variance and bias errors. The classifier is designed to handle the data imbalance and overfitting problems by adaptively transforming the multi-class classification problem into multiple binary classification problems, applying a bagging approach to train a set of base learners for each specific problem, adaptively specifying the number of base learners assigned to each problem, adaptively specifying the number of samples to use from each class, applying a novel data-imbalance aware cross-validation technique to generate the meta-data while taking into account the data imbalance problem at the meta-data level and, finally, using a multi-response random forest regression classifier as a meta-classifier. The BagStack classifier makes use of multiple features to solve the defect classification problem. In order to detect defects, a locally adaptive statistical background modeling is proposed. The proposed BagStack classifier outperforms state-of-the-art image classification techniques on our dataset in terms of overall classification accuracy and average per-class classification accuracy. The proposed detection method achieves high performance on the considered dataset in terms of recall and precision.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Methods for improving entity linking and exploiting social media messages across crises

    Get PDF
    Entity Linking (EL) is the task of automatically identifying entity mentions in texts and resolving them to a corresponding entity in a reference knowledge base (KB). There is a large number of tools available for different types of documents and domains, however the literature in entity linking has shown the quality of a tool varies across different corpus and depends on specific characteristics of the corpus it is applied to. Moreover the lack of precision on particularly ambiguous mentions often spoils the usefulness of automated disambiguation results in real world applications. In the first part of this thesis I explore an approximation of the difficulty to link entity mentions and frame it as a supervised classification task. Classifying difficult to disambiguate entity mentions can facilitate identifying critical cases as part of a semi-automated system, while detecting latent corpus characteristics that affect the entity linking performance. Moreover, despiteless the large number of entity linking tools that have been proposed throughout the past years, some tools work better on short mentions while others perform better when there is more contextual information. To this end, I proposed a solution by exploiting results from distinct entity linking tools on the same corpus by leveraging their individual strengths on a per-mention basis. The proposed solution demonstrated to be effective and outperformed the individual entity systems employed in a series of experiments. An important component in the majority of the entity linking tools is the probability that a mentions links to one entity in a reference knowledge base, and the computation of this probability is usually done over a static snapshot of a reference KB. However, an entity’s popularity is temporally sensitive and may change due to short term events. Moreover, these changes might be then reflected in a KB and EL tools can produce different results for a given mention at different times. I investigated the prior probability change over time and the overall disambiguation performance using different KB from different time periods. The second part of this thesis is mainly concerned with short texts. Social media has become an integral part of the modern society. Twitter, for instance, is one of the most popular social media platforms around the world that enables people to share their opinions and post short messages about any subject on a daily basis. At first I presented one approach to identifying informative messages during catastrophic events using deep learning techniques. By automatically detecting informative messages posted by users during major events, it can enable professionals involved in crisis management to better estimate damages with only relevant information posted on social media channels, as well as to act immediately. Moreover I have also performed an analysis study on Twitter messages posted during the Covid-19 pandemic. Initially I collected 4 million tweets posted in Portuguese since the begining of the pandemic and provided an analysis of the debate aroud the pandemic. I used topic modeling, sentiment analysis and hashtags recomendation techniques to provide isights around the online discussion of the Covid-19 pandemic

    MR Brain Image Classification: A Comparative Study on Machine Learning Methods

    Get PDF
    The brain tissue classification from magnetic resonance images provides valuable insight in neurological research study. A significant number of computational methods have been developed for pixel classification of magnetic resonance brain images. Here, we have shown a comparative study of various machine learning methods for this. The results of the classifiers are evaluated through prediction error analysis and several other performance measures. It is noticed from the results that the Support Vector Machine outperformed other classifiers. The superiority of the results is also established through statistical tests called Friedman test

    In-situ crack and keyhole pore detection in laser directed energy deposition through acoustic signal and deep learning

    Full text link
    Cracks and keyhole pores are detrimental defects in alloys produced by laser directed energy deposition (LDED). Laser-material interaction sound may hold information about underlying complex physical events such as crack propagation and pores formation. However, due to the noisy environment and intricate signal content, acoustic-based monitoring in LDED has received little attention. This paper proposes a novel acoustic-based in-situ defect detection strategy in LDED. The key contribution of this study is to develop an in-situ acoustic signal denoising, feature extraction, and sound classification pipeline that incorporates convolutional neural networks (CNN) for online defect prediction. Microscope images are used to identify locations of the cracks and keyhole pores within a part. The defect locations are spatiotemporally registered with acoustic signal. Various acoustic features corresponding to defect-free regions, cracks, and keyhole pores are extracted and analysed in time-domain, frequency-domain, and time-frequency representations. The CNN model is trained to predict defect occurrences using the Mel-Frequency Cepstral Coefficients (MFCCs) of the lasermaterial interaction sound. The CNN model is compared to various classic machine learning models trained on the denoised acoustic dataset and raw acoustic dataset. The validation results shows that the CNN model trained on the denoised dataset outperforms others with the highest overall accuracy (89%), keyhole pore prediction accuracy (93%), and AUC-ROC score (98%). Furthermore, the trained CNN model can be deployed into an in-house developed software platform for online quality monitoring. The proposed strategy is the first study to use acoustic signals with deep learning for insitu defect detection in LDED process.Comment: 36 Pages, 16 Figures, accepted at journal Additive Manufacturin

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    • …
    corecore