218,401 research outputs found

    Deep Policies for Width-Based Planning in Pixel Domains

    Full text link
    Width-based planning has demonstrated great success in recent years due to its ability to scale independently of the size of the state space. For example, Bandres et al. (2018) introduced a rollout version of the Iterated Width algorithm whose performance compares well with humans and learning methods in the pixel setting of the Atari games suite. In this setting, planning is done on-line using the "screen" states and selecting actions by looking ahead into the future. However, this algorithm is purely exploratory and does not leverage past reward information. Furthermore, it requires the state to be factored into features that need to be pre-defined for the particular task, e.g., the B-PROST pixel features. In this work, we extend width-based planning by incorporating an explicit policy in the action selection mechanism. Our method, called π\pi-IW, interleaves width-based planning and policy learning using the state-actions visited by the planner. The policy estimate takes the form of a neural network and is in turn used to guide the planning step, thus reinforcing promising paths. Surprisingly, we observe that the representation learned by the neural network can be used as a feature space for the width-based planner without degrading its performance, thus removing the requirement of pre-defined features for the planner. We compare π\pi-IW with previous width-based methods and with AlphaZero, a method that also interleaves planning and learning, in simple environments, and show that π\pi-IW has superior performance. We also show that π\pi-IW algorithm outperforms previous width-based methods in the pixel setting of Atari games suite.Comment: In Proceedings of the 29th International Conference on Automated Planning and Scheduling (ICAPS 2019). arXiv admin note: text overlap with arXiv:1806.0589

    Model Learning for Look-ahead Exploration in Continuous Control

    Full text link
    We propose an exploration method that incorporates look-ahead search over basic learnt skills and their dynamics, and use it for reinforcement learning (RL) of manipulation policies . Our skills are multi-goal policies learned in isolation in simpler environments using existing multigoal RL formulations, analogous to options or macroactions. Coarse skill dynamics, i.e., the state transition caused by a (complete) skill execution, are learnt and are unrolled forward during lookahead search. Policy search benefits from temporal abstraction during exploration, though itself operates over low-level primitive actions, and thus the resulting policies does not suffer from suboptimality and inflexibility caused by coarse skill chaining. We show that the proposed exploration strategy results in effective learning of complex manipulation policies faster than current state-of-the-art RL methods, and converges to better policies than methods that use options or parametrized skills as building blocks of the policy itself, as opposed to guiding exploration. We show that the proposed exploration strategy results in effective learning of complex manipulation policies faster than current state-of-the-art RL methods, and converges to better policies than methods that use options or parameterized skills as building blocks of the policy itself, as opposed to guiding exploration.Comment: This is a pre-print of our paper which is accepted in AAAI 201

    Combined Reinforcement Learning via Abstract Representations

    Full text link
    In the quest for efficient and robust reinforcement learning methods, both model-free and model-based approaches offer advantages. In this paper we propose a new way of explicitly bridging both approaches via a shared low-dimensional learned encoding of the environment, meant to capture summarizing abstractions. We show that the modularity brought by this approach leads to good generalization while being computationally efficient, with planning happening in a smaller latent state space. In addition, this approach recovers a sufficient low-dimensional representation of the environment, which opens up new strategies for interpretable AI, exploration and transfer learning.Comment: Accepted to the Thirty-Third AAAI Conference On Artificial Intelligence, 201

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards
    corecore